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Preface 

Over the last few decades, both aeronautics and astronautics have been strong mo-
tors for the advancement of control systems theory and application, as well as the 
fields of sensors, data fusion and navigation. Many of those achievements that 
earned aerospace the reputation as a synonym for high tech and progress have 
been enabled by innovations in guidance, navigation and control. 

Today, aerospace is still one of the driving applications in those fields, which 
stems from the special characteristics and needs of that segment. In an airplane 
seating hundreds of people, you cannot use the latest control algorithm to find out 
if it works by trial and error. In a deep space probe sailing for new shores, you 
need to do things right on the first and only attempt; (unlike a car or a microwave 
oven) you cannot test the integrated system in real operation before its actual mis-
sion. You cannot simply put a bulky machined box with standard components 
which works in “living room” environmental conditions in the slender body of an 
agile missile. 

Things are also quite different on the algorithm side. Aerospace systems  
can have highly nonlinear and strongly coupled dynamics.  The ranges of altitude, 
Mach number, center of gravity and weight are enormous and the dynamics can 
significantly change with those parameters.  Huge uncertainties can still remain  
in spite of costly modeling efforts. The range of time scales contributing to the 
system dynamics is large, speeds are higher, the environment is harsher and 
changing more rapidly, the distances travelled are much larger and the operation 
times for some systems are much longer than in other fields. To summarize, the 
challenges in the aerospace disciplines are unique and more demanding than in 
other domains. 

If these challenges were not enough, appropriate solutions must also be reliable, 
highly accurate, highly available, safe and must guarantee a well-defined perform-
ance level, even under a large variety of circumstances like system failure. An  
airplane cannot turn right and stop at the next cloud if things go wrong. All  
these challenges must be accomplished under mass, volume, power and cost  
constraints. 

This may sound like praise for aerospace, its scientists and engineers, but how-
ever you wish to see it, it is a viable explanation as to why, in contrast to other 
fields, there have always been dedicated conferences on “flight control”, “space 
navigation” and “missile guidance”, as specialized sessions at general conferences 
are not enough. The American AIAA Guidance, Navigation and Control confer-
ence serves as a brilliant example where the community of “rocket scientists” 
gathers to present on and to discuss these specific topics. 
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Europe has seen a strong trans-national consolidation process in aerospace over 
the previous decades. Most of the visible products, be it commercial aircraft, 
fighters, helicopters, satellites, launchers or missiles, are not made by a single 
country – they are the fruits of cooperation. No European country by itself hosts a 
specialized GNC community large enough to cover the whole spectrum of disci-
plines. However, on a European scale, mutual exchange of ideas, concepts and so-
lutions is enriching for all. Thus, the interest in having a truly European GNC con-
ference collecting the ideas of the scientific community within the continent and 
inviting the whole world to join has been articulated quite frequently. The first 
CEAS Specialist Conference on Aerospace Guidance, Navigation and Control 
(EuroGNC) is an attempt to follow this request and turn the vision into reality. It is 
the hope of the organizers and the Technical Committee members from all CEAS 
Member states that this conference establishes itself as a high class biannual recur-
ring event at changing locations, which brings together the researchers, scientists, 
developers and engineers who have dedicated their professional life and their pas-
sion to the arts of guidance, navigation and control. 

We are very thankful to AIAA for acknowledging our effort as a worthy com-
plement to their GNC conference and for co-sponsoring the event. 

Maybe – to draw a vision – an Asian aerospace GNC conference could join the 
European event, taking turns year by year. This would allow the global commu-
nity – beyond the yearly “jour fixe” at the AIAA GNC conference – to come to-
gether for a second time and to intensify information exchange and cooperation in 
a truly global field of science. 

At this point, it is important to thank all of those who took the burden to make a 
beginning and to organize the first EuroGNC conference. First of all DGLR, the 
German member society of CEAS which dared to take the risk of being the first 
organizer and then all the members of the organizing and technical committees 
who bravely accepted the challenge of tampering with systems and processes for 
paper review and others which are still in their prototype stages, smoothing the 
path for those to follow. Without their time, patience, dedication and willingness 
the event would never have been possible. 

But now enjoy the book which summarizes selected contributions of scientists 
to the first CEAS EuroGNC – the European Specialist Conference on Aerospace 
Guidance, Navigation and Control, giving proof to the fact that Europe and its 
friends from around the world do make a valuable contribution to the progress of 
the field. 

 
Munich and Bremen         Florian Holzapfel 
February 2011                 Stephan Theil 
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A Decoupled Approach for Trajectory
Generation for an Unmanned Rotorcraft

Sven Lorenz and Florian M. Adolf

Abstract. A decoupled approach to trajectory generation based on a cubic spline

geometry formulation is introduced. The distinct consideration of boundary condi-

tions yields a continuously differentiable trajectory definition such that path tracking

errors are minimized during flight. A curvature-based, dimensionless space-filling

curve allows to determine a suitable velocity profile along the path for hover-capable

vehicles. Tracking of the trajectory is enabled by a conversion between the spline

parameters and the arc length of the spline. In the past years, this approach in combi-

nation with a suitable trajectory tracking control has been successfully flight tested

with an unmanned helicopter.

1 Introduction

Autonomous flight in densely populated environment like urban terrain generally

requires excellent maneuverability. Hence, helicopter-based UAV platforms are pre-

ferred. Especially for dynamic high speed flight, changes like moving obstacles or

mission updates can require such complex control platforms to be equipped with an

onboard motion planning system.

As the survey by Goerzen [1] points out, a sole precision tracking of a precom-

puted trajectory is not a feasible overall solution. Dynamic constraints, atmospheric

conditions, uncertainty in the vehicle state estimates, and limited knowledge about

the environment may leave no chance to follow a precomputed plan precisely. Ap-

proaches for path smoothing1 exist [2] that allow to generate continuously differ-

entiable, timely annotated paths. Moreover, given a feasible flight control system,

a number of path following solutions exist [3, 4] even for commercial, black box

autopilots [5].

Sven Lorenz · Florian M. Adolf

Research engineers at the German Aerospace Center (DLR), Institute of Flight Systems,

Department of Unmanned Vehicles, Braunschweig, Germany

e-mail: sven.lorenz@dlr.de,florian.adolf@dlr.de

1 Functions with derivatives of all orders fit a smooth curve to a set of points.

sven.lorenz@dlr.de, florian.adolf@dlr.de
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However, the integrated optimization of a motion planning task can comprise

a whole set of hard realtime computations when aspects like task sequence order-

ing, route planning, reactive obstacle avoidance, and vehicle control are considered.

Thus, this work proposes a decoupled approach to motion planning. Previous work

by Andert and Adolf [6] indicates that a thorough problem decomposition is one

key to enable realtime sensor fusion, obstacle modeling, and 3D motion planning

during flight. This work develops this idea further by decomposing the trajectory

generation problem in decoupled subsequent layers. Although path and trajectory

planning may have the same meaning, there is a fundamental difference between

them. In this context a path is defined as the interpolation of position coordinates.

Trajectories refer to timely annotated paths, e.g. represented by a velocity profile

over a discretized path geometry.

Even a hover-capable vehicle cannot perform arbitrary yaw turns during fast for-

ward flight, such that an adequate yaw attitude command must be determined. A

common approach is to use an instantaneous tangent along a path. A continuously

differentiable path geometry should be preferred to enable smooth transitions. The

trajectory will be vehicle specific. The configuration space2 may be altered if the

vehicle properties or the characteristics of the environment change.

Generally, path search uses only simplified dynamic constraints and concentrates

on collision-free path segments, often with various geometries (e.g. linear, circle,

spline). Then a time dimension is added to the path yielding a trajectory by defining

the velocity profile over the path geometry. Instantaneous vehicle state estimates are

used together with the path slope in order to provide a feasible input to a trajectory

following controller. The nonlinear plant will be controlled by a baseline control

system that maintains desired velocities. More details on the control system can be

found in [7, 8].

The following section starts with the path definition. Based on the geometry of

the path the trajectory definition will be presented in section 3. The trajectory def-

inition includes the determination of the velocity profile as well as an approach to

account for acceleration limitations. Section 4 presents the trajectory following con-

trol system. A summary of the overall approach and future research directions are

discussed in section 5.

2 Path Definition

In general, a smooth path should be continuously differentiable. Due to the resulting

complexity of generating a collision-free path through narrow passages a function

of reduced order is selected. Most path planners avoid obstacles by generating co-

ordinates that divide the path from start to end position into consecutive segments.

These path segments use cubic splines that are continuously differentiable up to

the third derivative. A large safety margin accounting for path following errors can

therefore be avoided. Furthermore, the path planner utilized in this work assures a

2 Algorithmic search space of possible configurations that a physical system may attain.
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collision-free sphere volume (e. g. safety radius) of a selectable size. Note that it may

insert other path geometries into spline segments (e. g. through narrow corridors).

A univariate, polynomial spline is defined as a piecewise polynomial function.

In its most general form a polynomial spline S: [a,b] → ℜ consists of polynomial

pieces Pi : [τi,τi+1] → ℜ, where a strictly increasing sequence of real numbers is

used between the boundaries a and b:

a = τ0 <τ1 <· · · <τk−2 <τk−1 = b. (1)

That is,

S(τ) = P0(τ) , τ0 ≤ τ < τ1, (2)

S(τ) = P1(τ) , τ1 ≤ τ < τ2, (3)

. . .

S(τ) = Pk−2(τ) , τk−2 ≤ τ ≤ τk−1. (4)

The given k points τi are called knots. The vector τ = [τ0, . . . ,τk−1] is called a knot

vector for the spline. The knots are not equidistantly distributed in the interval [a,b],
the spline is therefore called to be non-uniform.

If the above described interpolation method is applied to a large number of way-

points, comparatively high-order splines have to be selected for a feasible interpola-

tion. Consequently, oscillations between the support points may occur. Therefore, a

cubic spline is applied piecewise for each segment. This way, a transition condition

at each segment boundary ensures smoothness up to the second derivative. A third-

order spline is selected for each segment k and each degree of freedom i = [x, y, z]:

Si,k(τ) = ai,k + bi,k ·(τ − τk)+ ci,k ·(τ − τk)
2 + di,k ·(τ − τk)

3 (5)

Si,k(τ) represents the spline for the dimension i in segment k for a specific τ . Its

derivatives w. r. t. τ are given by:

S′i,k(τ) = bi,k + 2 · ci,k ·(τ − τk)+ 3 ·di,k ·(τ − τk)
2 (6)

S
′′

i,k(τ) = 2 · ci,k + 6 ·di,k ·(τ − τk) (7)

S
′′′

i,k(τ) = 6 ·di,k. (8)

The n waypoints p j(x, y, z) , j = 1 . . .n are the support points of the spline interpo-

lation. A number of n points causes k = n−1 segments. Each segment contains three

spline functions including four spline parameters. To determine four parameters four

equations are required. The following requirements for each segment boundary are

defined:

• Consecutive spline segments must be connected with each other.

• The first and second derivatives must match the previous segment’s derivatives.

Note that path segment boundaries at a and b may have an enforced slope as well.

Otherwise, the second derivatives at the boundaries a and b are set to zero. Figure 1
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Fig. 1 Example: Path based
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shows a path result without enforced slopes at a and b. The approach presented

enables a smooth transition between the segments up to the second derivative. The

parameter sets defined for each spline yield the coordinates between the knots. In

addition to the desired overall path shape, vehicle configurations on that path must

be determined. The following section focuses on this task.

3 Trajectory Definition

The three-dimensional path defined in the section above has to account for obstacles

and to ensure the attainment of a set of global mission goals. Given a sufficiently

low velocity, helicopters are able to fly along paths with arbitrarily sharp turns. Thus,

solely the velocity is selected as the timely annotation of a path.

The curvature of the path is used to determine the velocity. However, curvature

changes may yield larger velocity changes than the vehicle can perform. Hence, a

search for velocity minima along the path must be performed before the vehicle

starts to fly the trajectory. From points, where the deceleration to the velocity min-

imum has to begin, the velocity will be reduced while the vehicle still follows the

given path.

In this section first the determination of the velocity based on the curvature will

follow. To adopt the velocity profile for the limited acceleration, a search algorithm

for velocity minima will be presented afterwards.

3.1 Quantification of the Velocity

Based on the curvature κ the velocity will be calculated for certain points τk+1 =
τk + ∆τ . The curvature κ for a space curve S(τ) is defined at a point τ as:

κ(τ) =
1

rcircle(τ)
=

∥

∥

∥S
′
(τ)×S

′′
(τ)

∥

∥

∥

∥

∥

∥S
′
(τ)

∥

∥

∥

3
. (9)

Based on Tietze [9], the following relations will lead to the largest velocity com-

mand based on the thrust available for a helicopter. The sum of the forces acting on

the center of gravity is used to determine the ability to compensate for gravity and
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centripetal force, and to change the velocity if desired. With the symbols FG for the

gravity force vector, FA for the aerodynamic force vector, FS for the thrust vector

of the helicopter and FK for the inertial force vector the sum of the forces results in

0 = FG + FA + FS + FK . (10)

The main thrust is produced by the main rotor of the helicopter. Due to the small

magnitude of the aerodynamic forces it is assumed that the magnitude of the thrust

of the main rotor must equal the sum of gravity and inertial forces:

|FS| = |FK |+ |FG| (11)

|FS| =
√

(mV̇K)2 +(mχ̇VK cosγ)2 +(mγ̇VK)2 + mg. (12)

In eq. (12), m represents the vehicle mass, VK the inertial velocity value, γ and χ
the orientation of the path w. r. t. the geodetic frame, and g the magnitude of the

acceleration due to the gravity force.

Replacement of χ̇ by VK cosγ
rcircle

and γ̇ by VK
rcircle

in eq. (12) results in

(|FS|−mg)2 =
(

mV̇K

)2
+

1

r2
circle

(

mV 2
K

)2 (

cos4 γ + 1
)

. (13)

The term 1
r2 can be replaced with κ2, cf. eq. (9). A definition of the largest acceler-

ation amax =
|FS|max

mmin
which can be produced by thrust enables the elimination of the

dependency on mass m. The velocity-curvature relation results in:

VK,max =

√

(amax −g)2 − V̇K
2

κ2 · (cos4γ + 1)
. (14)

Therefore, eq. (14) defines the largest velocity depending on the current acceleration

in path direction and the curvature of the spline.

Figure 2 shows a typical velocity profile for a spline curve over τ . The solid

(green) line represents the largest velocity limited to 20 m/s and is based on eq.

(14). As explained in more details in the following subsection, the dotted (blue)

line defines the velocity command for a deceleration with a specified deceleration

limitation.

Due to the neglected aerodynamic forces and the issue that the vehicle is not able

to change the flight path arbitrarily fast a scaling factor will be introduced. Beside

the flight velocity the path deviation must be provided to follow the path e. g. in the

presence of disturbances. A trajectory following control system to guide the vehicle

based on the desired path and the path deviation will be presented subsequently to

the following subsection.
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Fig. 2 Velocity profile for a

spline curve. Based on the

curvature the maximum ve-

locity is determined (solid).

Due to the deceleration lim-

itation the dotted velocity

profile is commanded to

slow down to the velocity

minima or stop at the end.

3.2 Velocity Minima Search Algorithm

In general, vehicles have acceleration and deceleration limitations. A sole path ge-

ometry cannot account for such limitations. Thus, based on the largest velocity de-

fined in eq. (14) the occurrence of minima, as illustrated in fig. 2, must be deter-

mined. The first challenge is the search for a minimum since the curvature is only

known at discrete points. Moreover, the velocity profile may have multiple local

minima which self-denies the use of gradient based search algorithms only.

Hence, locally bounded gradient searches are performed on a sampled spline.

Changes in the slope of the velocity are used to detect minima. For each detected

change a gradient based minimum search is performed. Similarly to the approach

in [10], the minima detection can be ensured by the property of resolution complete-

ness that defines a sufficient distance between each sample and a sufficient number

of samples for each path section.

The search through the spline results in a table of velocity minima with respect

to their corresponding position on the spline. Based on a model for the deceleration,

a point for the initiation of a slow-down maneuver can be determined. This method

gives a velocity command depending on the distance to a minimum. In this imple-

mentation a constant velocity slope of 0.3 s−1 is used. By applying a method to

convert distances into changes of τ , cf. section 4.3, the table is supplemented with

the specific slow-down points. Preliminary to the selection of the first entry a sort

by the slow-down points results in a list, which has the crucial points in the right

order.

In this work this global search is enhanced to become a quasi incremental search.

Similar to the approach in [4], a velocity minimum nearest to the helicopter position

defines the initial search horizon w. r. t. τ . This decreases the initial search time.

The vehicle can start or continue flying while searching for minima that are further

away. Of course, saving initial time comes at the price of additional computational

effort during flight. Nevertheless, this becomes particularly useful when unforeseen

obstacles require path re-planning: Low level flight paths through urban terrain may

have a large set of velocity minima to account for.



A Decoupled Approach for Trajectory Generation for an Unmanned Rotorcraft 9

4 Trajectory Following Control

After the definition of a path a feasible trajectory was defined in the previous section.

The aim of the trajectory following control system is to guide the vehicle to stay on

the given trajectory. Due to unconsidered disturbances and simplifications made in

the model used for trajectory generation, the vehicle will not follow the trajectory

without error feedback. Therefore, a control system for trajectory error reduction

must be designed.

Based on the velocity profile a combination of feedforward and error feedback

signals is used to constitute the desired velocity vector. In addition to the control gain

determination for error compensation, the determination of the feedforward veloc-

ity vector has major influence on the trajectory following performance. Moreover,

as the spline-based path is nonlinear, the calculation of path errors is nontrivial. By

expressing the path error in a path fixed frame and transforming the resulting veloc-

ity vector afterwards into the geodetic frame the control problem can be simplified.

The compensation of path errors will be done by proportional feedback.

4.1 Definition of Frames and Transformations

For the application for an UAV, used to demonstrate this method, some simplifica-

tions are made. The operation in a local urban terrain allows the assumption of a

flat Earth. Therefore, the position is described in a Cartesian coordinate system with

respect to an initial point p
0
= [x0, y0, z0]

T . From this origin to the current position

in the geodetic frame (Index “g”) the vector p represents the position of the UAV:

p =

⎡

⎣

x− x0

y− y0

z− z0

⎤

⎦

g

. (15)

A path-fixed frame (Index “k”) is defined as a coordinate system where the xk axis

points into the direction of the flight velocity as depicted in fig. 3. The angles γ and

χ specify the orientation of the yk and zk axes with respect to the geodetic frame.

Fig. 3 Definition of frames

and angles for a path fixed

frame with respect to the

geodetic frame, cf. Brock-

haus [11]

0

γ

γχ

χ

xg
xk

kk

yg

ykxk, zg

zg zk
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The transformation of a velocity vector represented in the Cartesian coordinate

system into polar coordinates is defined as:

⎡

⎣

VK

χ
γ

⎤

⎦ =

⎡

⎢

⎣

‖V‖
atan2(vKg, uKg)

−atan
(

wKg

‖uKg+vKg‖

)

⎤

⎥

⎦
, with ‖uKg + vKg‖ �= 0, (16)

where the two-argument function atan2 returns the angle in radians between the

positive uKg-axis of a plane and the point given by the coordinates (uKg,vKg) on it.

A deviation from the path, e. g. due to a sudden change of wind or a gust, will

be compensated by the feedback of the path error. These errors with respect to the

path fixed frame ∆xk, ∆yk and ∆zk are defined to be positive when the vehicle is

left, behind and above the desired position. An error vector between a commanded

position (Index “c”) and the current position (Index “s”) is defined as:

∆ p
g
=

⎡

⎣

xc − xs

yc − ys

zc − zs

⎤

⎦

g

. (17)

The transformation of the error ∆ p
g

into the path-fixed frame is achieved by:

⎡

⎣

∆x

∆y

∆z

⎤

⎦

k

= T T
gk ·∆ p

g
, Tgk =

⎡

⎣

cosγcosχ −sinχ sinγcosχ
cosγsinχ cosχ sinγsinχ
−sinγ 0 cosγ

⎤

⎦ . (18)

4.2 Determination of the Velocity Command

The first derivative of a spline, as defined in eq. (6), leads to a vector which rep-

resents a tangent on the path for a given parameter τ . The direction of this vector

is used to generate a velocity vector, whose orientation can be expressed in terms

of the angles χ and γ by using eq. (16). The absolute value of the velocity Vc is

determined based on the velocity profile described in section 3 and fig. 2.

The resulting velocity vector represents the command for a vehicle which is ex-

actly on the desired path. To compensate path errors this vector must be modified to

guide the vehicle back to the path. When expressing the path error in the path-fixed

frame, as defined in eq. (18), the modified velocity command in the geodetic frame

will be calculated with:
⎡

⎣

u

v

w

⎤

⎦

g

= Tgk(χc,γc)

⎛

⎝

⎡

⎣

Vc

0

0

⎤

⎦

k

+ K

⎡

⎣

∆xk

∆yk

∆zk

⎤

⎦

k

⎞

⎠ , K =

⎡

⎣

kx 0 0

0 ky 0

0 0 kz

⎤

⎦ . (19)

A path error ∆xk will therefore result in a larger velocity in path direction. Path er-

rors ∆yk and ∆zk will result in a rotated and in its absolute value modified velocity
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command. With regard to the velocity limitation based on the formerly defined cri-

teria the velocity command Vc should be less than VK,max from eq. (14). The limited

velocity is defined as:

VK,lim = SF ·VK,max, SF ≤ 1. (20)

The velocity command obtained from the velocity profile and the tangent on the path

is scaled to VK,lim with respect to its orientation. The values of the gains kx, ky and

kz will define the response to path errors. Therefore their determination was done by

adjusting the gains for a step in a (simulated) path error to result in an asymptotic

error reduction with overshoot less than 3%.

4.3 Determination of the Desired Position on a Spline

The position of the vehicle can be determined based on sensors suitable for the

application3. However, to calculate the path error at a certain time the correspond-

ing commanded position must be determined. For a spline, which is a piecewise

parametric space curve, the position is expressed in terms of the formerly defined

parameter τ . Compared to a path length between two points a change in this param-

eter has a nonlinear relation to a distance in the 3D space. In order to determine the

desired position for an increasing τ a method to convert between a distance in 3D

and a change in the parameter τ must be found.

The length of a space curve can be obtained by its arc length. From a partition

a = 0 < τ1 < ... < τn−1 < τn = b of the interval [a,b] we obtain a finite collec-

tion of points p(τ0), p(τ1), . . . , p(τn−1), p(τn) on the curve S. Denote the distance

from p(τi) to p(τi+1) by d(p(τi), p(τi+1)), which is the length of the line segment

connecting the two points. The arc length l of S is then defined to be

l(S) = sup
a=τ0<τ1<···<τn=b

n−1

∑
i=0

d(p(τi), p(τi+1)). (21)

By taking two points of a spline in terms of τa and τb the length can be approximated

by using a step size controlled ordinary differential equation (ode) solver. The solver

is supported by the first derivatives as well as an accuracy ε which must be defined.

For this application a Runge-Kutta solver with adaptive step size control was chosen.

An initial step size of 10−3 and an accuracy of ε = 10−6 turned out to be suitable.

Moreover, the conversion of a distance into an appropriate change of the spline

parameter τ is done by using a combination of bisection and Newton-Raphson

search algorithm. With the support of the length approximation method discussed

before the search algorithm returns the spline parameter τ = τ0 + ∆s correspond-

ing to an initial τ0 and a distance ∆s. While Newton-Raphson’s global convergence

properties are poor, fail-safe routines exist that utilize a combination of bisection

3 Usually GPS-aided sensor fusion algorithms can achieve position estimates of submeter

accuracy.
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and Newton-Raphson [12]. The hybrid algorithm takes a bisection step whenever

Newton-Raphson would take the solution out of bounds, or whenever Newton-

Raphson is not reducing the size of the brackets rapidly enough.

Based on the value of the commanded velocity Vc and the time ∆ t, elapsed since

the last update, the passed distance ∆s is approximated by

∆s = Vc ·∆ t. (22)

Any error that occurs due to this approximation results in a change in the desired

position on the path. Therefore, by feeding back the error between the position of

the vehicle and the desired position, this error will not have significant influence as

long as the update time will be sufficiently short.

The velocity profile shown in fig. 2 does not account for limitations in the ac-

celeration (only for deceleration). Hence the path error in path direction ∆xk would

increase reasonably fast due to the limitations of the vehicle. Instead of accounting

for this property in the trajectory definition, the modification of the reference po-

sition on the path by extending eq. (22) was selected. Depending on the distance

error ∆xk the change of the reference point τ is reduced. By an additional design

parameter Kr the progress of the reference point is controlled:

∆s = Vc ·∆ t −Kr ·∆xk. (23)

Prior to the conversion of ∆s to τ , ∆s is limited to 10 m. The design parameter

Kr is adjusted to 3 % overshoot. Finally, by using τ in eq. (5), the desired position

command p
c

can be provided.

This path control system was validated in real-time simulations and flight tests.

The algorithms turned out to be a feasible solution. However, in case of a large

curvature the velocity provided by eq. (14) will be small. Note that the velocity

command can become infeasible as soon as it is in the order of the velocity state

estimation noise. Moreover, this effect can be reinforced by the limitation as

Fig. 4 Flight test result for a spline based trajectory
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presented in eq. (20). Thus, a minimal velocity is enforced until the end of the path

is reached.

For the application to a helicopter UAV, the path tracking showed an acceptable

path following performance. However, a systematic path error is observable (fig 4)

and thus needs further investigation. One reason for this effect seems to be the time

the helicopter needs to adjust to the new velocity command. Due to the constantly

changing command for the velocity, the flight state lags behind. Moreover, the path

error compensator appears to be not fast enough to compensate this error. Thus,

research is underway to prevent this lagging.

5 Summary

This work presents a decoupled trajectory generation approach for motion planning.

Cubic spline segments are used to generate a collision-free path through narrow

passages. Based on the curvature of the path the velocity profile is defined. This

way, the complex nonlinear dynamics of a VTOL vehicle can be separated from

geometric path planning and trajectory generation. The system has been success-

fully flight tested on an unmanned helicopter.

Motivated by the physical model of the vehicle, the trajectory curvature and

the vehicle acceleration limits are used to compute the maximum velocity along

the trajectory. To account for path changes during flight (e. g. obstacle avoidance)

the computational efficiency for replanning is addressed by incrementally determin-

ing the velocity profile. It is updated incrementally towards a virtual horizon moving

along the trajectory.

Furthermore, a trajectory following system is presented which utilizes instanta-

neous trajectory tangents to generate a feasible velocity command vector for the

control system. It compensates potential path errors, e. g. due to wind disturbance.

Finding the desired position on the path is a nontrivial task and is caused by the

parameterization of the space curve by a knot vector. Thus, a conversion method for

the arc length of a curve and a change of the spline parameters is proposed. More-

over, a linear control law is used for path error compensation. To prevent exceeding

the maximum velocity limit, a scale factor reduces the velocity command.

Further research will have to focus on a reduction of the path deviation. This

reduces worst case safety margins needed for path collision checking.
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A Linear Parameter Varying Controller for a 
Re-entry Vehicle Benchmark* 

Andrés Marcos and Samir Bennani
* 

Abstract. In this article the design of a linear parameter varying controller for an 
atmospheric re-entry vehicle benchmark is presented. The control design approach 
used is based on the Single Quadratic Lyapunov Function approach. The re-entry 
vehicle used is a high-fidelity benchmark that includes full nonlinear motion, de-
tailed aerodynamic database, nonlinear actuators, colored sensor models, realistic 
uncertainties and a control-surface mix logic. The latter logic fully couples the 
longitudinal and lateral/directional motions and together with the noise and uncer-
tainties used result in a challenging and representative atmospheric re-entry 
benchmark. The results indicate that the LPV controller satisfies all the perform-
ance and robustness objectives and alleviates the designer task due to the auto-
mated gain-scheduled nature of the approach. 

1   Introduction 

Gain scheduling [1, 16, 17] is probably the most widespread approach in the 

Space industry to design controllers for systems undergoing large dynamical 

changes or requiring complex mode switching implementations. It can be consid-

ered an incremental step to local synthesis that uses linear time invariant (LTI) 

point-designs together with standard gain scheduling concepts, such as interpola-

tion, to obtain a global controller based on the local designs. Despite its wide 

spread use there are some drawbacks due to its ad hoc validation character, mainly 

related to the effect that the selection of the design points and of the scheduling 

rule (in terms of parameters and complexity) has on the performance of the global 

gain-scheduled controller.  

Linear parameter varying (LPV) synthesis techniques have positioned themselves 

as an alternative, or more advanced, step to gain scheduling and can be considered 
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as a type of automated gain scheduling approach [1, 18]. These techniques are at the 

center of a European Space Agency (ESA) study established to address an envi-

sioned need for advanced gain scheduling techniques in Space. The “LPV Modeling, 

Analysis and Design (LPVMAD)” consortium led by Deimos Space (Spain) and 

composed by research teams from the Computer and Automation Research Institute 

(SZATKI, Hungary), Delft University of Technology (The Netherlands) and Leices-

ter University (United Kingdom) was formed to address the development of an in-

dustrial LPV control design framework supported by reliable LPV software tools. 

Specifically, the objectives of the study were: 

1. To assess the possibility, needs and impact of LPV techniques in the control 

design process for space systems 

2. To propose a control design LPV framework 

3. To develop reliable LPV tools for modeling, analysis and design in support of 

such a framework 

4. To demonstrate the developed framework and tools for a relevant space system 

Results from Phase I of the study [10, 11, 12, 13, 14, 15] detailed the successful ac-

complishment of the first three points above. Phase II was tasked with addressing 

the 4th point above using a more challenging benchmark that included practical is-

sues such as saturation, motion coupling, controller scheduling and time-varying 

behaviour. The selected benchmark was an enhanced version of the well-known 

NASA HL-20 atmospheric re-entry vehicle. 

This article presents results from the fourth objective of the project. In particu-

lar, it details the design of an LPV controller for the low supersonic to subsonic 

phase of the selected re-entry benchmark. The layout of the article is as follows. 

Section 2 presents the LPVMAD re-entry benchmark. Section 3 details the de-

coupled longitudinal and lateral/directional LPV controller designs. Section 4 pre-

sents the analyses performed during the design cycle as well as the final validation 

campaign, based on a Monte Carlo campaign using the full, i.e. coupled, nonlinear 

vehicle under parametric (center of gravity, moments of inertia, mass and aerody-

namic coefficients) and time-varying (Mach number) changes. Section 5 con-

cludes with a summary of the results. 

2   LPVMAD Re-entry Benchmark 

The NASA HL-20 lifting-body vehicle was proposed as a substitute of the Space 

Shuttle Orbiter and although it was finally de-commissioned, many research ef-

forts were performed to develop a fairly detailed baseline aerodynamic database 

for the complete velocity range of the vehicle [2, 3, 4, 5]. 

For the present study, a 3 Degrees-of-Freedom optimized guidance trajectory 

adapted from reference [7] is considered. The study focuses in the pure aerody-

namic surfaces phase corresponding, approximately from low supersonic to  

sub-sonic speeds, i.e. Mach∈[3,0.8]. This selected phase is characterized by the 

end of a bank reversal and a similar maneuver for the angle-of-attack, see Figure 1. 

Notice that these almost simultaneous maneuvers results in strong coupling of the  
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longitudinal and lateral/directional motions (especially severe due to the control 

surface mix logic contained in the benchmark –more on this below). 

 

Fig. 1 Reference trajectory: angle-of-attack and bank angle versus time 

The full nonlinear equations of motion, see reference [2] for details, are used 

together with a representative aerodynamic database [2, 3, 4, 5]. This HL-20 im-

plementation is a quite more advanced, and representative, model than the pub-

licly available Matlab model [6], which uses the polynomial simplifications given 

in NASA report [3]. The complete aerodynamic database is formed by nonlinear 

look-up tables (LUT) dependent on Mach number, angle of attack, sideslip and 

control surface deflections. 

The available physical control surfaces are upper left and right flaps (DUL and 

DUR), lower left and right flaps (DLL and DLR), wing left and right flaps (DEL 

and DER) and rudder (DR). The deflection is positive downward for the up-

per/lower flaps (+TED and -TEU), away from the vehicle for the wing flaps 

(+TED) and to the left for the rudder (+TEL). The system implements a nonlinear 

control surface mix logic that transforms the controller-commanded elevator δele, 

aileron δail, speed-brake δsbk and rudder δrud deflections into the previous physical 

surfaces based on Mach number and complex nonlinear relationships. The output 

of the control-mixer is passed to the actuation system. Each actuation system is 

composed of a series interconnection of a second order filter, a magnitude limiter, 

a rate limiter and a time delay (of 0.005 seconds). The sensors are implemented as 

first order coloring filters and include measurement bias. 

A multiplicative uncertainty model is considered around nominal values of the 

parameters u, based on given percentage uncertainty ranges Δ% and normalized 

random but bounded gain δU, i.e. uΔ=u(1+ δUΔ%). For those magnitudes with 

nominal value equal to zero, an additive model is employed (the multiplicative 

model would not introduce uncertainty in the parameter for these cases). Refer-

ence [19] details the nominal values and percentage uncertainty Δ% used in the  

re-entry vehicle benchmark for the main vehicle geometry and aerodynamic pa-

rameters: center of gravity (e.g. Δ% of ±0.5% for xCG), moments of inertia (±5%), 

mass (±5%) and aerodynamic coefficients –including a CL/D uncertainty profile  
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Fig. 2 Basic aerodynamic coefficients in term of angle-of-attack and Mach 

that serves to physically relate the uncertainties from CL and CD. Further, the aero-

dynamic database is quite nonlinear and alternates stable with unstable areas – no-

tice the positive and negative slopes in CMO from Figure 2. 

A detailed analysis of the dynamic characteristics of the benchmark is given in 

[9, 19], and shows that the vehicle is quite challenging with shifts in stability for 

the lateral/directional and longitudinal motions and strong natural frequency and 

damping changes as the vehicles flies the trajectory, see for example Figure 3.  

 

Fig. 3 Lateral/Directional motion: Pole/Zero map based on Mach regions 

3   LPV Control Design 

This section presents the application of advanced gain-scheduling control design 

methods to the presented high-fidelity benchmark. The LPV technique used is the 
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so-called Single Quadratic Lyapunov Function (SQLF) approach [18]. Essentially, 

this technique synthesizes a LPV controller by means of finding a single quadratic 

Lyapunov function, not depending on the varying parameter vector, that satisfies 

an LPV version of the well-known bounded real lemma (BRL). In practice, it 

searches for a Lyapunov function valid for a set of linear matrix inequalities 

(LMIs) corresponding to the satisfaction of the BRL at a grid of values of the 

varying parameter vector that defines the LPV plant.    

The principal advantage of this method is that it builds up from LTI H∞ synthe-

sis. And actually, the current software tools used to synthesize the LPV controller 

directly takes the weights and interconnection used in the standard LTI H∞ design 

set-up and facilitates its tuning to arrive at the desired global performance. Indeed, 

the synthesis of design-point LTI H∞ controllers can be seen as a first step in the 

application of this LPV technique. LTI H∞ optimization is a design technique 

where specification of performance and robustness objectives is the main driver in 

correctly posing the mathematical optimization problem –as opposed to other con-

trol synthesis techniques where satisfaction of the objectives is evaluated after the 

design. LTI H∞ control synthesis is one of the cornerstones of modern control and 

is widely used across industry [16, 17, 18]. Thus, in order to assess the advantages 

and shortcomings of the advanced LPV control solution, a standard gain-

scheduling control design based on LTI H∞ design-point controller can be used. 

Such a baseline controller was developed and presented in reference [19]. Since 

this baseline controller follows a decoupled motion design approach, the LPV de-

sign process also uses a motion decoupling approach during synthesis –but both 

are always validated using the full, i.e. coupled, nonlinear vehicle. 

The control design objectives are to track the reference angles of attack, side-

slip and bank in the face of the established noise and uncertain levels with desired 

deviations of less than 2 degrees, and with acceptable short-term deviations of less 

than 4 degrees. 

A. Longitudinal Motion Controller Design 

The design rationale for the longitudinal motion is that of angle-of-attack tracking 

through an ideal-model formulation. The same design rationale and plant set-up as 

for the baseline control design are used [19].  

Since only inner-loop control is considered, the open-loop plant can be reduced 

to the short-period motion. In this manner, the state dimension of the controller is 

largely reduced (recall that for LTI H∞-based synthesis the obtained controller has 

the same number of states as the design interconnection). The open-loop plant 

used for design has 2 states (angle-of-attack and pitch rate), two outputs (same as 

the states) and two inputs (elevator and speed-brake deflections). The defined H∞ 

design interconnection is given in Figure 4. Wact penalizes the actuators magni-

tude; Wrob is used to add uncertainty at the plant input; Wperf and Wid serve to 

capture the angle-of-attack tracking formulation and to penalize its error; Wcmd 

shapes the angle-of-attack input; and finally, Wnoise is used for robustness by 

shaping the noise effect on the system. The I-block is introduced to indicate that 

no actuator model is used for the longitudinal motion.  
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Fig. 4 LPV controller design interconnection 

The only modification with respect to the baseline control design [19] is the use 

of a more refined grid of LTI plants around which to synthesize the LPV control-

ler and also a slight change in the design weights. There is an apparent increase of 

complexity, four different sets of weights are used for the LPV controller design 

versus three for the baseline, but the resulting LPV controller is indeed a single 

dynamic system and no effort on ad hoc manual gain-scheduling is required –

which is after all the greatest advantage of LPV synthesis techniques. Table 1 

shows the weights for the four longitudinal design-point controllers in terms of the 

generic weight transfer function Weight = K(as+1) / (bs+1). 

Table 1 Longitudinal LPV controller: H∞weights per Mach region 

[ − := same weight as on the Mach region to the left;     d2r:=180/π ] 

M =[3.959, 2.913] M =[1.457] 
M =[1.052, 0.922] M =[0.821] Type Weight 

K a b K a b K a b K a b 

Wα-noise 0.01*d2r 0 0 -- -- -- -- -- -- -- -- -- 

Noise 

Wq-noise 
0.001*d2r 1000 100

 
0.01*d2r 100 10

 

-- -- -- -- -- -- 

Wideal 
1.5

2
 / (s

2
 + 2*0.9*1.5*s 
+1.5

2
) -- -- -- -- -- -- -- -- -- 

Ideal/cmd 

Wcmd 
3*d2r 0 0 5*d2r 0 0 4*d2r 0 0    

Performance Wperf 
150 0 20 

-- -- -- 
150 0 10 150 0 20 

Wrob-ele 

0.05*d2r 0 100 
-- -- -- -- -- -- -- -- -- 

Robustness 

Wrob-sbk 
0.05*d2r 0 20 

-- -- -- -- -- -- -- -- -- 

Wact-ele 
1/40/d2r 0 0 

-- -- -- -- -- -- -- -- -- 

Actuation 

Wact-sbk 
1/20/d2r 0 0 

-- -- -- -- -- -- -- -- -- 
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B. Lateral/Directional Motion Controller Design 

The lateral/directional LPV controller is more complex than the previous LPV 

longitudinal controller, which is a single controller obtained using 4 sets of 

weights. Nevertheless, the use of the LPV synthesis approach simplifies the global 

lateral/directional controller complexity as for the LPV case is composed by two 

different LPV controllers straightforwardly “blended” (i.e. linearly interpolated) in 

contrasts to three different controllers for the baseline control design [19].  

The lateral/directional open-loop plants used for the design consist of four 

states (yaw rate r, roll rate p, sideslip angle β and bank angle σ), two input chan-

nels (aileron δail and rudder δrud deflections) and four outputs (yaw rate, roll rate, 

lateral acceleration ny and bank angle). The interconnection used is as in Figure 4 

but with the weights based on a model-matching approach for bank angle com-

mands (Wcmd and Wid) and including two additional objectives in the perform-

ance weight Wperf: lateral acceleration minimization and turn-coordination [8].  
 

Table 2 Lateral/Directional LPV controller: H∞weight per Mach region 

[ − := same weight as on the Mach region to the left;     d2r:=180/π ] 

Klat-LPV-1 Klat-LPV-2 

M=[2.91å2.09]   
at M every 
5seconds 

M=[2.25, 2.09, 2.03, 
1.93, 1.74] M =[1.05, 0.92, 0.80] 

Type Weight 

K a b K a b K a b 

Wp= Wr 0.01*d2r 0 0 -- -- -- -- -- -- 

Wσ 0.01*d2r 0 0 -- -- -- -- -- -- 
Noise 

Wny 0.01/9.8 0 0 0.5/9.8 0 0 -- -- -- 

Wideal 1.03 0 0.5886 1.16 0 0.166 1.03 0 0.588 
Ideal/cmd 

Wcmd 15*d2r 1 10 25*d2r 0.05 0.5 25*d2r 1 1.6667 

Wny 0.1 0 0 3.5 0 0 1.5 0 0 

Wφ 103 0.5 10.3 120 0.5 24 50 0 20 Performance

WTC 2 0 0 -- -- -- -- -- -- 

Wail 0.5*d2r 0 2 0.01*d2r 0 0.1 -- -- -- 
Robustness

Wrud 0.5*d2r 0 2 0.02*d2r 0 0.2 -- -- -- 

Wail 0.05/d2r 0 0.1 -- -- -- -- -- -- 

Wrud 0.05/d2r 0 0.1 -- -- -- -- -- -- 

Wail-dot 
0.025/d

2r 
0 0 0.06/d2r 0 0 -- -- -- 

Actuation 

Wrud-dot 
0.025/d

2r 
0 0 0.06/d2r 0 0 -- -- -- 
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Additionally, and critical in this case, it is the inclusion of magnitude and rate 

first-order models for the actuator weights (in the position of the I-block)-Table 2. 

From a qualitative aspect, and based on a comparison with the experience of 

designing the baseline controller [19], it is remarked that the tuning of the weights 

can be performed much faster for the LPV controller than for the baseline due to 

the global automated scheduling nature of the approach. That is, the LPV synthe-

sis adds an additional design degree of freedom through the optimized search of a 

common Lyapunov function valid at the selected grid points. This optimized 

search compensates for any ‘rough’ weight definition at the local points; alterna-

tively, this can be seen as allowing the engineer to focus on performance when de-

fining the weights at the local points while robustness is achieved by the auto-

mated scheduling of the LPV approach. It is worth mentioning that the use of the 

final LPV weights for the redesign of the ad-hoc gain-scheduling does not result in 

similar performance and robustness properties. This is the result of the non-global 

nature of the ad hoc gain-scheduling and the manual selection of the interpolation 

scheme. In summary, the systematic character of the LPV synthesis techniques 

can save a lot of time in defining the weights and in achieving the required control 

design objectives when compared to traditional ad-hoc gain-scheduling. 

4   Control Analysis 

A. Linear (During-Design) Analysis 

During the design phase a set of linear analytical analysis and pseudo-linear time-

simulations (linear but with some selected nonlinearities) are performed to con-

verge to a controller that fulfills the desired objectives. Among these analyses: 

• Weighted performance versus inverse of the performance weight.  

• Weighted actuation versus noise and inverse of the actuation weight. 

• Controller GK transfer functions for each of the tested plants. 

• Sensitivity transfer functions and flying qualities. 

• Time-domain simulation using the LTI plants and corresponding extracted LTI 

controllers together nonlinear actuators (dynamics, rate and magnitude satura-

tions) and sensors (noise and dynamics). 

A summary of results is given in this section. For example, Figure 5 shows the lon-

gitudinal weighted and controller transfer functions (TFs). As it is seen, they are 

below the inverse of the weights which means that the controller is unaffected by 

the corresponding noise channels and have the appropriate shape. Figure 6 on the 

other hand shows longitudinal controller linear step response simulations, which 

serve to evaluate its flying qualities (this is tested for a set of LTI plants including 

those used for design as well as other points in the flight envelope). 

This is then validated through pseudo-linear (i.e. linear plant with selected 

nonlinearities) time domain simulations, Figure 7. A doublet-plus-ramp profile for 

the angle of attack reference command is used to determine the controller tracking 

of step and ramp profiles. This is especially important in the benchmark as it is  
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noticed that good tracking for steady-state commands (e.g. step responses) is eas-

ily achievable in the full nonlinear simulation but that ramp-type profiles, which 

are very characteristics for unpowered vehicles in approach configuration, is more 

difficult to achieve while satisfying actuation limits. The results in Figure 7 shows 

that for the linear plus nonlinear actuation/sensor, the controller is valid –still, note 

the increase in elevator actuation for the ramp tracking. 

Fig. 5 Longitudinal LPV controller: weighted 

TF to αerror 

 

Fig. 6 Longitudinal LPV controller: Flying 

Qualities 

 

Fig. 7 Longitudinal LPV controller: pseudo-linear responses (LTI plant with full actuators 

& sensors) 

With respect to the lateral/directional controller, the analyses performed during 

the design process also show the satisfaction of the objectives. Nevertheless, in 

this case it is observed some noise influence at high frequencies –see Figure 8 for  
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Fig. 8 Lateral/Direction LPV controller: 

weighted actuation 

 

Fig. 9 Lateral/Direction LPV controller: 

S&T 

 

Fig. 10 Lateral/Direction LPV controller: pseudo-linear responses (LTI plant with full ac-

tuators & sensors) 

an example using the weighted actuation linear analysis. Although this coupling is 

not critical it is reflected in the sensitivity analysis (S and T) and in the time-

domain simulations, see Figure 9 and Figure 10. Thus, the conclusion from the 

analyses is that the lateral/direction LPV controller has the desired frequency and 

flying quality characteristics and should fulfill, in as much as linear analyses can 

guarantee, the objectives in the nonlinear simulation.  

In summary, for both LPV controllers it can be seen from the linear analytical 

analysis perspective, that all objectives are satisfied. In the following section, it is 

shown that the conclusion from these during-design analyses is validated in the 

full nonlinear time-domain simulations through a Monte Carlo campaign. 
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B. Nonlinear Full-Motion Monte Carlo Analysis 

A Monte Carlo campaign is performed using the full-motion nonlinear simulator 

of the high-fidelity benchmark and the uncertainty parameters and ranges defined 

in Section 2, see also [9, 19]. No failed cases, out of  >1400 runs, are found indi-

cating that the LPV controller achieves the desired robust objectives while all er-

rors are within the limits (see Figure 11) indicating that the performance objectives 

are also achieved. When compared with the results from the baseline controller –

not shown due to space limitations, see [19]— the LPV controller compares very 

well and improves both performance and robustness.  

 

Fig. 11 Monte Carlo full-motion: tracking signals and errors 

5   Conclusion 

In this article, longitudinal and lateral/directional LPV controllers have been de-

signed and analyzed for a high-fidelity re-entry benchmark. The LPV design uses 

the so-called Single Quadratic Lyapunov Function (SQLF) approach, which builds 

up on LTI H∞ point-designs. The assessment of the full-motion LPV controller has 

been performed using a wide array of linear analytical techniques (from sensitivity 

transfer functions to flying quality responses) and full nonlinear time-domain 

Monte Carlo campaigns. The results indicated that that LPV controller designs  

fulfill all the performance and robustness objectives. Further, in comparison to a 

traditional gain-scheduling controller [19], the systematic character of the LPV 

synthesis techniques can save a lot of time in defining the weights and in achiev-

ing the required control design objectives. 
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A Low Cost Small UAV Flight Research Facility

Austin M. Murch, Yew Chai Paw, Rohit Pandita, Zhefeng Li, and Gary J. Balas

Abstract. This paper presents an overview of the low-cost, open source small Un-

manned Aerial Vehicle (UAV) flight research facility at the University of Minnesota.

A detailed description of the facility, its components, and its capabilities is pre-

sented, as well as applications of the UAV platforms to research, education, and

collaboration. Flight results from controls research is presented, followed by a brief

summary of current research and future directions.

1 Introduction

Unmanned Aerial Vehicles (UAVs) are used worldwide today for a broad range of

military, civil, and research applications. There continues to be a growing demand

for reliable and low cost UAV systems. This is especially true for small to miniature-

sized UAV systems (less than 2 meter wing span) where the majority of systems are

still deployed as prototypes due to demand and lack of reliability. Improvements in

the modeling, testing and flight control for these vehicles would help to increase

their reliability and performance of small UAVs during operations. The traditional

approach used in the development cycle [1, 2] for manned aircraft is time consum-

ing and resource intensive. Applying the same techniques to the small UAVs is not

realistic.

The UAV Research Group in the Department of Aerospace Engineering and Me-

chanics (AEM) at the Univeristy of Minnesota is focused on development and im-

plementation of a low-cost, open source small Unmanned Aerial Vehicle (UAV)

flight research facility. The goal of this facility is to support research activities within

the department including control, navigation and guidance algorithms, embedded

fault detection methods, and system identification tools. The system is built mostly

out of commercial-off-the-shelf (COTS) components to minimize the overall mate-

rial and development costs. In addition, the entire architecture is open and available

Austin M. Murch · Yew Chai Paw · Rohit Pandita · Zhefeng Li · Gary J. Balas
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to any researchers or organizations who wish to collaborate on the development or

application of the UAV capabilities. (http://www.aem.umn.edu/∼uav/) In addition

to the researchers from AEM department, the UAV Research Group is collaborat-

ing with researchers at the Budapest University of Technology and Economics in

Hungary and the University of Sannio at Benevento, Italy.

2 UAV Testbeds

The UAV Research Group uses COTS R/C fixed wing aircraft modified to carry the

necessary avionics and instrumentation payloads. Several different aircraft models

have been used during the development process, but the primary test aircraft is the

Ultra Stick 25e [3] (shown in Figure 1(a)). Two additional aircraft in use are an Ultra

Stick 120 (shown in Figure 1(b)) which can handle significantly more payload than

the Ultra Stick 25e, and the Mini Ultra Stick, the smallest version of the Ultra Stick

family.

(a) Ultra Stick 25e (b) Ultra Stick 120 (FASER)

Fig. 1 Ultra Stick UAV Testbeds

The Ultra Stick 120 (aka FASER; Free-flying Aircraft for Subscale Experimen-

tal Research) has a conventional horizontal and vertical tail with rudder and ele-

vator control surfaces, respectively. The aircraft has a symmetric airfoil wing with

aileron and flap control surfaces. All six control surfaces are actuated by Hitec HS-

5625MG servos. The plane is propelled by a 1900W Actro 40-4 brushless electric

motor with a Graupner 14 x 9.5 folding propeller. Power for the motor comes from

two 5000mAh 5-cell lithium polymer batteries connected in series. The servos are

powered by a separate 1350 mAh 3-cell lithium polymer battery. The main internal

payload bay is located directly under the wing in the fuselage and measures approx-

imately 35cm L x 10cm H x 10cm W; additional payloads may be accomodated

in the aft fuselage or externally. The 120 class can carry approximately 2.5kg of

payload.

The Ultra Stick 25e is an approximately 65% scale model of the Ultra Stick 120,

with the same basic configuration. The UAV Research Group maintains three Ultra

Stick 25e aircraft, named ’Odin’, ’Loki’, and ’Thor’. All six control surfaces are ac-

tuated by Hitec HS-225BB servos. The plane is propelled by a 600W E-Flite Power
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Table 1 Summary of Aircraft Parameters

Parameter Mini Ultra Stick Ultra Stick 25e FASER

Wing span 0.985 m 1.27 m 1.92 m

Wing chord 0.21 m 0.3 m 0.43 m

Length 0.865 m 1.05 m 1.32 m

Wing reference area 0.21 m2 0.32 m2 0.769 m2

MTOW (Tested) N/A 2.04 kg 9.07 kg

Empty weight 0.62 kg 1.50 kg 6.35 kg

Endurance 10−15 min 15−20 min 15−20 min

Cruise speed 10−15 m/sec 15−20 m/sec 20−30 m/sec

25 brushless electric motor with an APC 12 x 6 propeller. Power for the motor and

servos comes from a 4200mAh 3-cell lithium polymer battery. The main internal

payload bay is located directly under the wing in the fuselage and measures ap-

proximately 22cm L x 6cm H x 7.5cm W; additional payloads may be accomodated

in the aft fuselage or externally. The 25e class can carry approximately 0.55kg of

payload.

The Mini Ultra Stick is an approximately 50% scale model of the Ultra Stick

120, with the same basic configuration. The UAV Research Group currently uses

this aircraft as a wind tunnel model, as the smaller size enable it to fit into the AEM

department’s low speed wind tunnel.

The specifications of the three Ultra Stick aircraft are given in Table 1. The Ultra

Stick aircraft family is marketed as a trainer-level aerobatic aircraft, so it is relatively

easy for a moderately skilled R/C pilot to fly, but is still capable of highly dynamic

manuevering flight.

3 Onboard Avionics

The current architecture of the onboard avionics is shown in Figure 2 and Table 2

gives a listing of the individual components in the system. The flight computer uses

a real-time operating system and flight software written in C. The flight computer

handles data collection from each sensor, performs attitude and position estimation,

executes flight control algorithms, stores relevant data, outputs PWM servo com-

mands, and sends information to the ground control station via the data modem.

A failsafe switching board is used to switch control of the aircraft between man-

ual mode (human R/C pilot) and the flight computer. The hardware interface to the

flight computer is handled via a custom-designed interface board.

3.1 Sensors

The sensor suite for the UAVs is focused on measuring the aircraft state data needed

for normal flight guidance, navigation, and control algorithms. Position, velocity,



32 A.M. Murch et al.

Fig. 2 Onboard avionics architecture

Table 2 Onboard avionics system components

Component Module Cost

Flight computer Phytec MPC5200B microcontroller $300

Interface board AEM custom design $250

IMU Analog Devices iSensor ADIS16405 $800

GPS USGlobalSat EM-406A $50

Pressures Honeywell ASDX $60

Data Telemetry Free Wave MM2 900 Mhz modem $375

Failsafe Switch AcroName RxMux $300

Manual Control Spektrum DX-7 2.4 Ghz R/C system $300

and accelerations in the aircraft body frame and navigation frame are the normal

quantities of interest. In general, the minimum sensor suite to achieve these data

with sufficient accuracy is the combination of an IMU, GPS, and pitot-static system.

Prior work has utilized an integrated sensor suite (Crossbow Micronav) that com-

bined all of these functions, but this product is no longer available or supported. An

affordable replacement for the Micronav has been difficult to find, and as a result,

individual sensor components have been selected and integrated into the system.

While this process does incur development and testing overhead, it has the advan-

tage of allowing the researcher to select optimal sensors for the given application,

and also offers a simple path for upgrading sensor capabilities. The replacement

sensor components are described as follows:

IMU sensor: The Analog Devices iSensor ADIS16405 is a small, low-cost, tem-

perature compensated, tri-axial accelerometer, rate gyro, and magnetometer. Data is

provided to the flight computer via SPI bus at 50Hz.
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GPS module: The USGlobalSat EM-406A is a small 25mm square unit with

an integrated antenna. The GPS circuitry is located directly underneath the patch

antenna, allowing a very compact operation. The EM-406A uses the SiRF StarIII

GPS engine and data is provided to the flight computer via TTL serial at 1Hz.

Pressure sensors: The Honeywell ASDX is a small IC-based, digital output,

temperature-compensated pressure sensor available in differential and absolute ver-

sions. These units are used to measure total and static pressure to determine the

airspeed and altitude of the aircraft, and are connected to a Pitot-static probe that

protrudes forward of the right wing of the aircraft. Pressure data is provided to the

flight computer via I2C bus at 50Hz.

3.2 Flight Computer

The current flight computer is a phyCore MPC5200B-tiny 32-bit PowerPC micro-

controller. Prior work has utilized an phyCore MPC55, but limitations in processing

power motivated an upgrade. The MPC5200B has a clock frequency of 400 Mhz,

760MIPS of processing power, and performs floating point computation. Current

flight software utilizes about 2% of the CPU capacity. It has a wide range of I/O

capabilities to support communication with external devices in addition to onboard

data storage capacity. Details on the specifications of the MPC5200B can be found

on the Phytec website [4]. Data is stored onboard the MPC5200B in the 64MB

SRAM and downloaded after the flight via an Ethernet connection to the ground

station.

3.2.1 Flight Software

The onboard flight computer utilizes a real-time operating system (eCos) and flight

software written in C. In addition to being open source and freely available, the

eCos operating system provides a real-time kernel, can be configured to minimize

the computing overhead required for the operating system, supports multi-threading,

and is POSIX C compatible [5].

The flight software uses multiple prioritized threads running at different rates

to perform the necessary tasks for flight. Prioritizing multiple threads helps to en-

sure the most important time critical tasks are performed first (e.g. data acquisition).

Table 3 Flight software thread description

Priority Thread Description Frequency (Hz)

1 DAQ data acquisition for each sensor component 50

2 AHRS attitude determination using EKF 50

3 CLAW flight control law and actuator commands 25

4 INS-GPS INS/GPS navigation filtering algorithms 10

5 DATA onboard data storage 50

6 TELE packing and sending of telemetry data 20
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Currently, there are 6 threads, listed in Table 3, which describes their function, pri-

ority, and update rate.

The data acquisition, data storage, and telemetry threads are relatively stable and

few changes are made to these software functions from flight to flight. Most research

activity occurs in the AHRS, flight control law, and INS/GPS software functions.

4 Ground Control Station

The Ground Control Station (GCS) is used during flight testing to monitor the

aircraft state and health status. It consists of a laptop computer running the GCS

software connected via serial to a data modem. The GCS software is a Java-based

program inspired by the Open Source Glass Cockpit Project. It is designed to give

vital flight information in real time to observers in order to assess the flight perfor-

mance and maintain situational awareness of the aircraft during the flight test. The

GCS software includes a Heads-Up Display, a moving map showing the location of

the aircraft, commanded actuator positions, and indicators to display flight control

mode information. Figure 4 shows a screenshot of the GCS software.

Fig. 3 Ground control station

5 Simulation Testing

The use of simulation-based development and testing prior to actual flight testing

reduces the total development time and helps ensure the algorithm under develop-

ment is validated and bug-free, reducing costly debug time in the field and minimiz-

ing risk to the UAV platforms. The UAV Research Group maintains an integrated

framework of three simulation environments used during the development pro-

cess (Figure 4). The UAV simulation model is constructed in the Matlab/Simulink
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Fig. 4 Application of simulation testing for flight control development

environment using the Aerospace Blockset [6]. All three simulations share the same

nonlinear dynamics model.

5.1 Nonlinear Simulation

The 6-DOF nonlinear simulation model uses the full nonlinear equations of motion,

linear derivative aerodynamics, and table lookup propulsion models. Models of rel-

evant aircraft subsystems such as actuators, motor, propeller, sensor dynamics, and

noise are included. The environmental model includes a detailed model of Earth’s

atmosphere, gravity, magnetic field, wind, and turbulence. The aerodynamic deriv-

iatives were derived from first principles and empirical methods, and then updated

using flight test data [7]. Bifilar swing tests were used to determine the moments

of inertia, and wind tunnel testing was used to characterize the motor and propeller

thrust, torque, and power.

5.2 Software-in-Loop Simulation

The Software-in-the-Loop (SIL) simulation contains the nonlinear simulation with

the C-code implementation of the control law in a Simulink S-function block. Only

the flight control law is used at this stage; the remainder of the flight software is not

included. This step is primarily used for debugging and to verify the C implementa-

tion of the algorithm under development matches the designer’s expectations.

5.3 Processor-in-Loop Simulation

The PIL simulation is an extension of SIL simulation that includes the MPC5200B

flight computer into the simulation setup. Figure 5 shows the differences between
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Fig. 5 Block structure of SIL and PIL simulation

the SIL and PIL simulations. The Mathwork’s Real-Time Windows Target toolbox

[8] is used to ensure the simulation runs in real time on a Windows PC which is

crucial for meaningful results when the real-time flight computer is included in the

simulation loop. The PIL simulation also has an interface for a R/C pilot via a USB

R/C-transmitter-style interface. Aircraft state data can be visualized on the GCS

software or via FlightGear, a free open-source flight simulator [9]. The PIL simula-

tion offers the following additional benefits to SIL simulation:

• Ability to test and identify controller implementation issues before the flight test-

ing. This helps to determine the limitations on actual hardware and provides im-

portant information for controller redesign.

• Provides a real-time testing environment for synthesized controllers.

• Provides a testbed for integration and testing of hardware and software subcom-

ponents at the system level.

• Provides an environment for the pilot and flight test engineers to prepare and

understand the scope of the flight test and gain confidence in the overall system.

Beside testing, debugging and validating the control design and implementation,

the PIL simulation is used for post-flight analysis in validating the simulation model

that is recursively updated from flight test data. Once the simulation model has been

sufficiently validated, it can be used to augment and substitute much of the flight

testing which helps to reduce the risk and developmental costs of the system.
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6 Flight Testing

Flight testing is the final stage of testing in the development cycle. Under the current

concept of operations, a R/C pilot is the pilot in command and has authority over

what has control of the aircraft (human vs. flight computer). The R/C pilot performs

the takeoff and landing of the aircraft and transfers control to the flight computer

once at an appropriate flight condition. A toggle switch on the R/C transmitter is

used to transfer control of the aircraft to the flight computer via the RxMux fail-

safe switch. At anytime during testing, the R/C pilot can take over control from the

flight computer by toggling this switch on the R/C transmitter. Future plans include

development of autonomous takeoff and landing capabilities, but the R/C pilot will

remain as a safety backup.

Flight operations are contained to be within visual range of the R/C pilot and

under 400 feet AGL altitude. Typical flight durations are 15-20 minutes, depending

on the purpose of the flight. A normal deployment will last 3-4 hours and have 6-9

flights.
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(b) SIL test (γ = 1.6)
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(c) Flight test (γ = 1.0)
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(d) Flight test (γ = 1.6)

Fig. 6 SIL and flight test result of H∞ controllers
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(a) FDI filter output and aircraft states

(b) Control surface commands, aircraft attitude and airspeed

Fig. 7 Experimental flight data analysis

Flight testing to date has primarily been focused on robust control law and fault

detection filter research. Figure 6 shows a comparison of SIL simulation data and

flight data for an H∞ control design [7]. This research effort was successful in using

the entire UAV framework to develop, test, and fly a flight control law experiment.

This effort also validated the integrated framework design approach and the con-

cept of using a low-cost UAV platform for flight controls research. An acceptable

match between the simulation and flight results was achieved despite the low fidelity

simulation model and the relatively low quality sensors on the UAV platform.

The model-based fault detection and isolation (FDI) algorithms evaluated using

the UMN flight test facility were based on robust H∞ filter designs. The effect of

various closed-loop controllers on the FDI filter performance for an aileron fault

were investigated. Three lateral-directional axis controllers were considered: a clas-

sical PID design, a LQ optimal multivariable design and a direct model-reference

adaptive controller (MRAC). The experimental objective were to compare the ro-

bustness of the three controllers and the performance of the FDI filter to detect the

aileron fault in the presences of the three controllers. Figures 7a and 7b show the

flight test tracking performance of the three controllers. Recall that the controllers

being investigated are associated with the lateral-directional axes of the aircraft. An

identical pitch controller is used in all experiments to track 5 deg pitch command
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reference. The parameter ’AP mode’ indicates the status of FCC, i.e. whether the pi-

lot or onboard flight program (OFP) is in control. The experimental results show the

varied behavior attained with the robust filter for the different controllers. The ben-

efit of having a flight test platform is the ability to validate theory and simulations

on the test aircraft. In 2010, a total of 69 research flights were conducted.

7 Current Activities and Future Directions

Currently, the UAV Research Group is pursuing several research appliations for the

UAV platforms and development framework.

• The National Science Foundation (NSF) has recently started a program focused

on Cyber-Physical Systems (CPS) research [10]. As part of this research, the

UAV platforms will play a key role in testing embedded fault detection al-

gorithms including model based methods, software methods, and data-driven

anomaly detection methods. These fault detection methods will also be applied

to real-world industry problems in a collaborative effort with local industry to a

production UAV platform and air data sensors.

• Precision landing of small UAVs is a significant challenge given the low quality

sensors typically used. Many operational losses of UAVs result from the inability

of the UAV to return reliably to a small protected location. The UAV simula-

tion and platform will be used to develop precision landing algorithms, sensor

requirements, and test results in an effort to improve the operational efficiency

and loss rate of small UAVs.

• Extensive wind tunnel data is expensive to collect and is rarely openly available.

Researchers at the NASA Langley Research Center performed significant static

wind tunnel tests of an Ultra Stick 120 as part of the FASER development ef-

fort [11, 12]. This data is being implemented into the UAV simulation and will

be openly available for research, education, and collaboration. This data set in-

cludes control surface and thrust effects over an angle of attack range of -5 to

40 degrees and an angle of sideslip range of +/- 30 degrees. As mentioned previ-

ously, the UAV Research Group operates an Ultra Stick 120 that was donated by

NASA LaRC. This aircraft is instrumented with two angle of attack/sideslip vane

sensors on wingtip booms, which expands the possible research applications of

this platform to include aerodynamic model identification, gust alleviation, and

high angle of attack/post-stall flight.

• The AEM department has developed a ”Design, Build, Simulate, Test and Fly

a UAV” course focused on the use of rapid prototyping software tools for vehi-

cle modeling, guidance, navigation, and flight control, real-time implementation,

hardware-in-the-loop simulation and flight tests. The UAV platforms and simu-

lation framework was used for the class. Students repeated the design process

of the UAV, including component selection, simulation, flight controller design,

testing and implementation. At the end of the class, student-designed controllers

were flight tested on the UAV platform.
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8 Conclusion

A low-cost, open source small UAV flight research facility has been developed at the

University of Minnesota. The UAV Research Group is actively applying the UAV

platform to flight controls, guidance, navigation, and fault detection research. The

AEM department is integrating the UAV platforms into the educational curriculum,

giving students a unique opportunity to work with real flight data and have access

to a flight test capability. The total cost required to field the UAV aircraft, avionics,

and sensors described in this paper is under 3,000USD, which is less than the cost

of most COTS autopilot systems marketed at small UAVs!
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Adaptive Nonlinear Flight Control and Control
Allocation for Failure Resilience

Thomas Lombaerts, Michiel van Schravendijk, Ping Chu, and Jan Albert Mulder

Abstract. In this publication, reconfiguring control is implemented by making use

of Adaptive Nonlinear Dynamic Inversion (ANDI) for autopilot control. The adap-

tivity of the control setup is achieved by making use of a real time identified physical

model of the damaged aircraft. In failure situations, the damaged aircraft model is

identified by the so-called two step method in real time and this model is then pro-

vided to the model-based adaptive NDI routine in a modular structure, which allows

flight control reconfiguration on-line. Three important modules of this control setup

are discussed in this publication, namely aerodynamic model identification, adaptive

nonlinear control, and control allocation. Control allocation is especially important

when some dynamic distribution of the control commands is needed towards the

different input channels. After discussing this modular adaptive controller setup,

reconfiguration test results are shown for damaged aircraft models which indicate

satisfactory failure handling capabilities of this fault tolerant control setup.

1 Introduction

Recent airliner accident statistics ([1]) show that a significant share of these acci-

dents, namely 17%, is caused by loss of control in flight, where control of an aircraft

is lost in flight due to a technical malfunction, a piloting mistake or an external up-

set. This observation motivates flight control research in the field of so-called fault

tolerant flight control (FTFC). Fault Tolerant Flight Control aims to increase the sur-

vivability of a failed aircraft by reconfiguring the control laws rather than by means
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of hardware redundancy only, which is current practice. There are many control

approaches possible in order to achieve fault tolerant flight control. An important

aspect of these algorithms is that they should not only be robust, but even adaptive

in some way, in order to adapt to the faulty situation, see ref. [7, 15]. In the category

of adaptive control algorithms, a distinction is made between indirect adaptive con-

trol and direct adaptive control. Indirect adaptive control involves two stages. First,

an estimate of the plant model is generated online. Once the model is available, it

is used to generate the controller parameters. Instead of estimating a plant model, a

direct adaptive control algorithm estimates the controller parameters directly in the

controller. This can be done via two main approaches: output error and input error.

Of both main categories mentioned here, indirect adaptive control is preferable due

to its flexibility and its property of being model based. In both categories, there are

also two sub-versions, namely model reference adaptive control (MRAC) and self-

tuning control (STC). In the former, one relies on a reference model and works on

minimizing the tracking error between plant output and reference output (such as

the concept of sliding mode control). With model reference indirect adaptive con-

trol it is feasible to achieve three important goals, namely trim value adjustment for

the inputs, decoupling of inputs and outputs and closed loop tracking of pilot com-

mands, see ref. [7]. Self-tuning control focuses on adapting the (PID) control gains

of the controller by making use of the estimated parameter values and is known to be

more flexible, see ref. [39]. Currently, much research is performed in the field of in-

direct adaptive control, where the adaptation is more extensive than only tuning the

PID control gains. One of these new indirect control possibilities is adaptive model

predictive control (AMPC), which is an interesting algorithm thanks to its nature to

deal with (input) inequality constraints. These constraints are a good representation

for actuator faults. It should be noted that there have already been some successful

applications of MPC in the field of fault tolerant flight control, see ref. [2, 23, 34].

An alternative indirect adaptive nonlinear control approach is discussed in this pub-

lication, which allows a reconfigurable control routine placing emphasis on the use

of physical models to be developed, and thus producing internal parameters which

are physically interpretable at any time. This technique can deal with control surface

failures as well as structural damage resulting in aerodynamic changes.

This publication discusses the combination of the two step method as an iden-

tification procedure, and nonlinear dynamic inversion as a control method in order

to obtain a model based fault tolerant flight controller. Another important module

of this control setup is control allocation. Control allocation is especially impor-

tant when some dynamic distribution of the control commands is needed towards

the different input channels. The structure of this publication is as follows. Sec-

tion 2 provides information on the high fidelity RECOVER simulation model which

has been used in this research project. The identification procedure is described in

section 3, while section 4 discusses the nonlinear adaptive control method. Further

explanations about control allocation can be found in section 5. Simulation results

are discussed in section 4.1 for the autopilot. Finally, section 6 presents some con-

clusions and recommendations for future research.
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2 RECOVER Simulation Model

The presented work is part of a research project by the Group for Aeronautical Re-

search and Technology in Europe (GARTEUR). This group has established flight

mechanics action group FM-AG(16) with the specific goal to investigate the possi-

bilities of fault tolerant control in aeronautics and to compare the results of different

reconfiguring control strategies applied to a reference benchmark flight trajectory.

That benchmark scenario is inspired by the so-called Bijlmermeer disaster of EL AL

flight 1862, where a Boeing 747-200 Cargo aircraft of Israel’s national airline EL

AL lost two engines immediately after take-off from Amsterdam airport Schiphol in

the Netherlands and crashed into an apartment building in the neighbourhood while

trying to return to the airport. A detailed simulation model of this damaged aircraft

is available from the National Aerospace Laboratory NLR. This RECOVER (RE-

configurable COntrol for Vehicle Emergency Relief) benchmark model is discussed

in detail in ref. [40, 41] and has been used (also in earlier versions) by a number of

investigators and organizations ([34, 35, 42]). More information about the reference

benchmark scenario can be found in ref. [27, 29]. Other control strategies and re-

sults as part of the framework of FM-AG(16) applied to the same benchmark model

can be found in ref. [3, 10, 16, 21, 22]. Related Fault Detection and Isolation (FDI)

work can be found in ref. [44].

The simulation benchmark for evaluating fault tolerant flight controllers as dis-

cussed in ref. [41] contains six benchmark fault scenarios of varying criticality.

Fig. 1 shows the failure modes and structural damage configuration of the Flight

1862 accident aircraft, which is the most important fault scenario in the simulation

benchmark. This publication will focus primarily on the El Al engine separation

scenario, which is an accurate simulation of flight 1862, as explained above, which

Fig. 1 Failure modes and structural damage configuration of the Flight 1862 accident aircraft,

suffering right wing engine separation, partial loss of hydraulics and change in aerodynamics,

source: [40]
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has been validated with data from the digital flight data recorder DFDR and where

the loss of hydraulics is taken into account. Another scenario is the loss of the verti-

cal tail, where the vertical tail plane and rudders are detached, resulting in a loss of

lateral static stability.

3 Aerodynamic Model Identification

The identification method considered in this study is the so-called two step method,

which has been continuously under development at Delft University of Technology

over the last 20 years, see ref. [8, 24, 36]. There are many other identification al-

gorithms mentioned in the literature like maximum likelihood identification (MLI)

and other one step identification routines, but not all of them are applicable on line.

One of the few procedures which can be implemented in real time is the so-called

filtering method developed at DLR, see ref. [20]. This is a joint state and parameter

estimation algorithm, but very complex. The advantage of the two step method is

that it is easier to implement on-line. The key concept of the two step method, is that

the identification procedure has been split into two consecutive steps, as substanti-

ated in ref. [9]. More precisely, the global non-linear one step identification method

is decomposed in two separate steps, where the nonlinear part is isolated in the air-

craft state estimation step. Consequently, the aerodynamic model parameter identi-

fication procedure in the second step can be simplified to a procedure which is linear

in the parameters, but involves nonlinear regressors. The aim is to update an a priori

aerodynamic model (obtained by means of wind tunnel tests and CFD calculations)

by means of on-line flight data. The first step is called the Aircraft State Estimation

(ASE) phase, where the second one is the Aerodynamic Model Identification (AMI)

step. In the Aircraft State Estimation procedure, an Iterated Extended Kalman Filter

is used to determine the aircraft states based upon redundant but perturbed infor-

mation from all sensors (air data, inertial, magnetic and GPS measurements). By

means of this state information, it is possible to construct the combined aerody-

namic and thrust forces and moments acting on the aircraft. By means of a recursive

least squares operation, the aerodynamic derivatives can be deduced. Especially in

case of structural damage, the aerodynamic properties can change drastically, re-

sulting in the need for joint aerodynamic model structure selection and parameter

estimation. This can be done on-line by means of Adaptive Recursive Orthogonal

Least Squares (AROLS), see ref. [31]. Validation tests have shown that these meth-

ods are very accurate. More details about the identification procedure can be found

in ref. [13]. The identification method is triggered by a monitoring algorithm of the

innovation (residual).

4 Adaptive Nonlinear Control

A major advantage of dynamic inversion is its ability to naturally handle changes of

operating conditions, which removes the need for gain scheduling, e.g. as is the case

for classical control methods. This is especially advantageous for control of space
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re-entry vehicles, due to their extreme and wide operating conditions which vary

between hypersonic speed during re-entry and subsonic regions during the terminal

glide approach phase to the runway. Another advantage is its natural property of

decoupling the control axes, i.e. no coupling effects remain between steering chan-

nels and the different degrees of freedom. NDI control has been implemented in

the Lockheed F-35 Lightning II, ([45, 5]). Dynamic inversion is a popular control

method for flight control and aircraft guidance, ([4, 11, 43]) as well as reconfiguring

control, ([14, 37]).

The main assumption in NDI is that the plant dynamics are assumed to be per-

fectly known and therefore can be cancelled exactly. However, in practice this as-

sumption is not realistic, not only with respect to system uncertainties but especially

to unanticipated failures for the purpose of fault tolerant flight control. In order to

deal with this issue, one can make use of robust control methods as outer loop con-

trol or neural networks to augment the control signal. However, another solution is

the use of a real time identification algorithm, which provides updated model infor-

mation to the dynamic inversion controller. These augmented structures are called

adaptive nonlinear dynamic inversion (ANDI). The latter procedure is the method

of choice for this research.

Figure 2 gives a high-level logical structure overview of the control strategy,

involving the two step method algorithm and adaptive nonlinear dynamic inversion.

Fig. 2 Layout of Adaptive Nonlinear Dynamic Inversion FTFC

Three consecutive inversion loops have been implemented, namely a body angu-

lar rate loop, an aerodynamic angle loop and a navigation loop, which can be placed

in a cascaded order based upon the time scale separation principle. The body angular

rate loop tracks roll rate p, pitch rate q and yaw rate r by commanding the control

surfaces aileron δa, elevator δe and rudder δr. This control law is based upon the

dynamic equation of an aircraft: ω̇ = I−1Ma − I−1ω × Iω, where ω is the angular

rate vector, I is the inertia matrix and Ma are the aerodynamic moments and relies

on the identified stability and control derivatives for the three angular moments. The

second loop is the aerodynamic angle loop which tracks roll angle φ , angle of attack

α and sideslip angle β by commanding the body angular rates in the inner loop. The

navigation loop tracks course χ , flight path angle γ and speed V by commanding the
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roll angle φ , angle of attack α and throttle setting Tc. The control law consists of a

kinematics based inversion and a subsequent aerodynamic forces based inversion,

as elaborated in [19, 18]. Linear controllers act on each separate NDI loop. They

involve proportional and proportional-integral control, and gains have been selected

to ensure favourable flying qualities by means of damping ratio ζ and natural fre-

quency ωn while complying with the time scale separation principle. Optimization

of these gain values has been achieved by means of multi-objective parameter syn-

thesis (MOPS) optimization, see ref. [26, 32, 33]. The detailed description of the

control laws for this project can be found in [30].

4.1 Evaluations of Autopilot Experiments on RECOVER: Engine

Separation Scenario

The engine separation scenario is a very sensitive situation to combine commands in

heading, altitude and speed simultaneously. Crucial in this context is to avoid engine

throttle saturation. Therefore, in this experiment only a heading change has been

considered, as shown in fig. 3(a). Moreover, a limited maximum roll angle of 20◦

has been imposed, due to the restricted safe flight envelope. It has been found that

altitude and speed changes are also feasible separately, but these are not discussed

in this publication.

The time histories of the states in fig. 3(b) reveal that the aircraft in post fail-

ure conditions flies with a small nonzero roll angle and sideslip angle, due to the

asymmetric damage, despite a zero commanded sideslip angle. The control surface

deflections in figure 4 confirm the cessation of functioning of the control surfaces

which are powered by the hydraulic circuits connected to engines number 3 and 4,

as illustrated in fig. 1. The remaining operative surfaces are successful in keeping

the aircraft in equilibrium and under control, although with restricted authority.
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Fig. 3 Tracking quantities and states for the engine separation scenario
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Fig. 5 Spoilers and specific forces for the engine separation scenario

Two additional interesting quantities to investigate are the throttle setting and the

average square innovation ∆ = 1
m ∑n

i=1 ∆(i), with ∆ = b−Ax the innovation (fit-

ting error), which triggers the re-identification routine as explained in ref. [25, 28].

Figure 5(a) confirms that the throttle setting does not saturate1, however the remain-

ing control margins in order to remain inside the safe flight envelope are severely

restricted. This is due to the asymmetric thrust which needs to be compensated by

the control surfaces. The spike at t = 50s is caused by the feedforward path in the

controller, which is needed to compensate for the instantaneous speed loss of the

two lost engines. Figure 5(b) depicts the values for the average square innovation

for each force and moment channel separately. At t = 50s, it can be seen that the

threshold ∆th = 10 for ∆ X is exceeded, and a re-identification procedure is triggered

for CX . It has become necessary to include the sideslip angle β , which has become

1 More information about throttle saturation in the RECOVER simulation model can be

found in [13].
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significant due to the sideslipping flight, as an additional regressor in the identifi-

cation procedure. This leads to a successful new identification procedure which is

performed extremely quickly as can be seen in this figure. This result confirms the

beneficial contribution from the identification routine in this fault tolerant flight con-

trol setup. The used control allocation strategy is static and equal distribution of the

control commands over all relevant control surfaces. More advanced techniques are

considered in section 5.

5 Control Allocation

This section describes ways to enhance the performance of Fault-Tolerant Flight

Control (FTFC) Systems by augmenting them with different Control Allocation

(CA) methods, based upon a study published in [38]. These methods can be used to

distribute the desired control forces and moments over the different control effectors

available, i.e. control surfaces and engines, which makes the control system more

versatile when dealing with in-flight failures. In a first stage, a number of different

control allocation methods were compared using a simplified aircraft model. This

yielded two promising methods: Weighted Least Squares (WLS) and Direct Control

Allocation (DCA).
In the WLS method, [17], the cost function is written as follows:
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Then the optimization problem can be written as:

uΩ = argminu ‖A(ui +p)−b‖ (2)

u = ui +p (3)

u ≤ u ≤ u (4)

and the residual is computed as: d = b−Aui

This method is in theory able to find a feasible solution u for all attainable vir-

tual controls v. This is due to the fact that it is able to free up previously saturated

actuators. This gives this method much more flexibility compared to other methods.
Direct Control Allocation (DCA) is an alternative approach to Optimization

Based Control Allocation. Instead of optimizing some criterion, such as the ℓ2-
norm, DCA produces a solution based on geometric reasoning. Durham was the
first one to describe Direct Control Allocation [12]. Ref. [6] described the Direct
Control Allocation problem as:

maxa,u∗ a (5)

subject to: Bu∗ = av (6)

u ≤ u∗ ≤ u (7)
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Then determine the control u as:

u =

{
1
a

u∗ if a > 1

u∗ if a < 1
(8)

The DCA method looks for the largest virtual control av that can be produced in

the direction of the desired virtual control v. When the maximum virtual control is

larger than the desired virtual control (a > 1), it scales back the true control input

to match the two. If the maximum virtual control is smaller than the desired virtual

control (a < 1), the true control input is not scaled. The benefit of DCA is that it

will always produce a control effort in the same direction in the control dimension

space as the desired control effort v.

These two methods were subsequently implemented in the aforementioned Adap-

tive Nonlinear Dynamic Inversion (ANDI) controller, discussed in section 4. Using

the RECOVER model described in section 2, both methods were subjected to the

engine separation scenario and a few other failures. Both methods were scored on

a number of metrics and compared with some other methods. For each method,

the contribution of an Actuator Health Monitoring System (AHMS) was evaluated.

This system updates the control efficiencies in the mathematical model. The results

of these tests in fig. 6 reveal that DCA is the best method to be implemented with

an NDI based FTFC System. Regarding maneuverability, DCA is consistently the

top performer, especially outperforming the other methods when it comes to turn

radius, see fig. 6(a), and Dutch Roll damping, as shown in fig. 6(b).
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Fig. 6 Performance comparisons between control allocation variants for the engine separa-

tion scenario and the vertical tail loss

For DCA, the addition of AHMS had little impact, although for some other con-

trol allocation methods there were clear benefits when using this system. The lack of

effect the AHMS has on the performance of DCA can be explained by the fact that

this method takes the current actuator position and the rate limits into account when

computing the solution to the control effort distribution problem, which serves the

same purpose as AHMS, although in a different way.
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This study has shown that a significant improvement in the performance of a

FTFC System can be achieved by including a control allocation method, specifically

DCA has shown to be very promising in this context as motivated above. The ability

to use the full potential of the actuator suite helps to keep control over the aircraft

when a large part of the control power for one of the aircraft axes is lost. More

details about this study can be found in ref. [38].

6 Conclusions and Future Work

Summarizing, it can be stated that, following experiments in a high fidelity simula-

tion model including validated structural failure modes based upon past accidents,

the fault tolerant flight control approach based upon the real time physical model

identification integrated with adaptive nonlinear dynamic inversion is successful in

recovering damaged aircraft. The designed methods are capable of accommodating

the damage scenarios which have been investigated in this project. Another impor-

tant result is that model identification using the two step method has proven to be

real time implementable in practice. It has been found that adaptive control allo-

cation is another crucial module for a successful fault tolerant flight controller. An

extensive comparative study has shown that the Direct Control Allocation method

is the best method to be combined with an ANDI based FTFC system. The DCA

method looks for the largest virtual control that can be produced in the direction of

the desired virtual control.

It has been found that damage induced flight restrictions are very important dur-

ing post failure flight. Therefore, future efforts should also be put into the estimation

of the post-failure safe flight envelope and subsequent optimization of the reference

trajectory taking into account the new envelope.

References

1. Civil aviation safety data 1993-2007. Technical report, Civil Aviation Authority of the

Netherlands (CAA-NL) (2008)
2. de Almeida, F.A., Leißling, D.: Fault-tolerant model predictive control with flight test

results on ATTAS. In: AIAA Guidance, Navigation and Control Conference, num-

ber AIAA 2009-5621 (2009)
3. Alwi, H.: Fault Tolerant Sliding Mode Control Schemes with Aerospace Applications.

PhD thesis, University of Leicester (February 2008)
4. Balas, G., Garrard, W., Reiner, J.: Robust dynamic inversion control laws for aircraft

control. In: Proceedings of the AIAA Guidance, Navigation and Control Conference,

Washington, DC, pp. 192–205. AIAA (1992)
5. Balas, G.J.: Flight control law design: An industry perspective. European Journal of Con-

trol, special issue 9(2-3), 207–226 (2003)
6. Bodson, M.: Evaluation of optimization method for control allocation. In: Proceedings

of AIAA Guidance, Navigation and Control Conference, number AIAA-2001-4223 (Au-

gust 2001)
7. Bodson, M., Groszkiewicz, J.E.: Multivariable adaptive algorithms for reconfigurable

flight control. IEEE Transactions on Control Systems Technology 5(2), 217–229 (1997)



Adaptive Nonlinear Flight Control and Control Allocation for Failure Resilience 51

8. Chu, Q.P.: Lecture Notes AE4-394, Modern Flight Test Technologies and System Iden-

tification. Delft University of Technology, Faculty of Aerospace Engineering (2007)

9. Chu, Q.P., Mulder, J.A., Sridhar, J.K.: Decomposition of aircraft state and parameter es-

timation problems. In: Proceedings of the 10th IFAC Sympium on System Identifiation,

vol. 3, pp. 61–66 (1994)

10. Cieslak, J., Henry, D., Zolghadri, A., Goupil, P.: Development of an active fault-tolerant

flight control strategy. AIAA Journal of Guidance, Control and Dynamics 31, 135–147

(2008)

11. da Costa, R.R., Chu, Q.P., Mulder, J.A.: Re-entry flight controller design using nonlinear

dynamic inversion. Journal of Spacecraft and Rockets 40(1), 64–71 (2003)

12. Durham, W.C.: Computationally efficient control allocation. Journal of Guidance, Con-

trol and Dynamics 24(3), 519–524 (2001)

13. Edwards, C., Lombaerts, T.J.J., Smaili, M.H.:Fault tolerant control - a Benchmark Chal-

lenge. Lecture Notes in Control and Information Sciences, vol. 399. Springer, Heidelberg

(2010)

14. Ganguli, S., Papageorgiou, G., Glavaski, S., Elgersma M.: Aircraft fault detection, iso-

lation and reconfiguration in the presence of measurement errors. In: AIAA Guidance,

Navigation and Control Conference and Exhibit, number AIAA-2006-6551, Keystone,

Co. (August 2006)

15. Groszkiewicz, J.E., Bodson, M.: Flight control reconfiguration using adaptive methods.

In: Proceedings of the 34th Conference on Decision and Control, pp. 1159–1164 (1995)

16. Hallouzi, R., Verhaegen, M.: Fault-tolerant subspace predictive control applied to a boe-

ing 747 model. AIAA Journal of Guidance, Control and Dynamics 31, 873–883 (2008)

17. Harkegard, O.: Backstepping and Control Allocation with Applications to Flight Control.

PhD thesis, Linkoping University, Sweden (2003)

18. Holzapfel, F.: Dynamic inversion based control concept with application to an unmanned

aerial vehicle. In: AIAA Guidance, Navigation and Control Conference and Exhibit,

number AIAA-2004-4907 (2004)

19. Holzapfel, F.: Nichtlineare adaptive Regelung eines unbemannten Fluggerätes. PhD the-
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Coordinated Road Network Search for Multiple
UAVs Using Dubins Path

Hyondong Oh, H.S. Shin, A. Tsourdos, B.A. White, and P. Silson

Abstract. This paper proposes a coordinated road network search algorithm for

multiple heterogeneous unmanned aerial vehicles (UAVs). The road network search

problem can be interpreted as the problem to seek minimum-weight postman tours

with a graphic representation of the road network. Therefore, the conventional Chi-

nese Postman Problem (CPP) is first presented. We, then, consider physical con-

straints of UAVs into the search problem, since they cannot be addressed in the

typical CPP. This modified search problem is formulated as Multi-choice Multi-

dimensional Knapsack Problem (MMKP), which is to find an optimal solution min-

imising flight time. The Dubins path planning produces the shortest and flyable

paths in consideration of physical constraints, so that the Dubins path is used to

calculate the cost function of the modified search problem. The performance of the

proposed multiple UAVs road network search algorithm is verified via numerical

simulation for a given map.

1 Introduction

Recently, there have been great efforts to develop cooperative systems of multiple

UAVs and investigate their benefits. For instance, in military operation, the coopera-

tive system is able to not only enhance the survivability, but also increases chance to
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succeed its missions. In terms of practical value, one of the greatest benefits of the

cooperative system is that it can provide users with better information superiority.

However, developing such an autonomous cooperative system is quite challenging

because of technical and operational issues such as decision making and information

fusion to be solved.

For reconnaissance, inspection, and intelligence mission, UAVs need to patrol

some region and gather information. These missions often constraint UAVs path

and trajectory. For instance, if UAVs are utilized to get some information of enemy’s

activities on the specific roads and military bases, or to observe the traffic of ports

or roads, they should fly over only those roads or region rather than patrol whole

terrain. This problem is defined as the road search problem, and also known as

the vehicle routing problem. The cooperative systems of UAVs can considerably

improve information superiority in this problem.

Road search problem has mainly been handled in the operational research area

[1, 2, 3, 4], and this can be generally classified by two categories: one is Traveling

Salesman Problem (TSP) which finds a shortest circular trip though a given number

of cities, and the other Chinese Postman Problem (CPP) finding again the shortest

path but with path constraints on an entire network of road. The TSP using multiple

UAVs can be considered as task assignment problem to minimise the cost (time

or energy) by assigning each target to the UAV and a various methods have been

developed such as binary linear programming based optimisation [5, 6], heuristic

method including iterative network flow [7] and tabu search algorithm [8]. On the

other hand, the CPP is normally used for ground vehicle application such as road

maintenance, snow disposal [9] and boundary coverage [10].

Vehicle routing algorithms usually approximate their path to a line for reduc-

ing the computational load, so the physical constraints imposed on the vehicle are

not addressed. Although some algorithms for the TSP consider the physical con-

straints, they are mostly developed for a single vehicle [11]. For multiple vehicles,

only heuristic method [12] is implemented due to the complexity of the problem.

Moreover, these constraints have been rarely considered in the CPP. This paper pro-

poses a road network search synthesis which considers the physical constraint, as

well as provides a sub-optimal minimum time solution. We first define the road

network problem using a graph representation, implement the conventional CPP

which seeks minimum-weight postman tours of the road network, and then modify

the search problem in consideration of the constraints of the multiple UAVs. This

modified search problem is formulated as Multi-choice Multi-dimensional Knap-

sack Problem (MMKP) [5, 13], which is to find an optimal solution minimising

flight time. MMKP formulation allows to consider fuel or energy capacity of each

UAV and different types of roads and vehicles. The Dubins path is used to evaluate

the performance index of MMKP since it generates the shortest and flyable paths

between road junctions by using simple geometry [14].

An overview of road network search problem is introduced in Section 2. Section

3 presents two heuristic algorithms to solve the conventional road search problem

for multiple vehicles. In Section 4, this paper addresses the constraints of UAVs and
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proposes a road search synthesis using the cooperating UAVs. At the last section,

the performance of the proposed synthesis is verified via the numerical examples.

2 Road Network Search Problem

To search the roads identified in the map, a road network should be established,

which consists of a set of straight line joining waypoints. These waypoints are lo-

cated either on road junctions or are located along the roads at sufficient separation

to allow fairly accurate representation of the curved road by a set of straight lines.

The road network is chosen for this study as shown in Fig. 1(a). It shows the Google

map [15] of some village in the UK. The road network can be converted to a graph

as shown in Fig. 1(b). In order to search all roads within the map, there are two

typical routing problems [2].

(a) Google map of village in the

UK

(b) Graphic representation

Fig. 1 Road network problem

Travelling Salesman Problem (TSP): A salesman has to visit several cities (or

road junction). Starting at a certain city, he wants to find a route of minimum length

which traverses each of the destination cities exactly once and leads him back to his

starting point.

Chinese Postman Problem (CPP): A postman has to deliver mail for a network

of streets. Starting at a given point, e.g., the post office, he tries to find a route of

minimum length allowing him to traverse each street at least once and leading him

back to the post office.

This paper focuses on the CPP and its variation which involves constructing a tour of

the road network traveling along each road with the shortest distance. Typically, the

road network is mapped to an undirected graph G = (V, E), and edge weights w :
E → R+

0 , where the roads are represented by the edge set E and road crossings are

represented by the node set V . Each edge is weighted with the length of the road or

the amount of time needed to pass it. The CPP algorithm involves first constructing

an even graph from the road network graph. This even graph has a set of vertices

with an even number of edges attached to them. This is required as any traverse of

the junction by approaching on one road and leaving on another, which means that
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only an even number of edges will produce an entry and exit pair for the tour. As the

road network graph may have junctions with an odd number of edges, some roads

are chosen for duplication in the graph. The technique chooses a set of roads with

the shortest combined length to minimise duplication. The tour of the even graph

is calculated by determining the Euler tour of the graph, which visits every edge

exactly once or twice for duplicated edge.

3 Heuristic Algorithms for Multi-Agent Road Network Search

The CPP has a lot of variations such as the Capacitated CPP which capacitates

the total edge cost they can bear, the Rural CPP which visits certain roads but not

necessarily all of them, the Windy CPP which has different value for the same edge

according to the direction and the k-CPP which deals with the deployment of several

postmen [3]. In this section, Min-Max k-CPP (MM k-CPP) algorithms are described

for multi-agent road network search with the map as given in Sec. 2. MM k-CPP is

a variation of k-CPP which considers the route of the similar length. This objective

can be required if UAV should finish road search mission with the minimum mission

completion time. The MM k-CPP problem was first mentioned by [16] and later,

solved by several algorithms [2]. This study implements two heuristic algorithms

for the MM k-CPP with the similar way as in the literature and compared the results.

3.1 Cluster Algorithm

This algorithm is based on the cluster first - route second approach. In other words,

in the first step, the edge set E is divided into k clusters and then, a tour for each

cluster is computed. This algorithm can be represented as a constructive heuristic

method, and described as follows [2].

Algorithm description

1. Determine the set F of representative edges

First of all, k representative edges f1, . . . , fk of cluster Fi for each vehicle are

determined. Let f1 be the edge having the maximum distance from the depot

and f2 be the edge having maximum distance from f1. The rest of representative

edges are successively determined by maximizing the minimum distance to the

already existing representatives. Then, remaining edges are assigned to the clus-

ter according to the weighted distance between e and fi considering the distance

between representative edges and depot, number of assigned edge to the cluster

Fi and cost of the cluster.

2. Include edges for connectivity

Add edges between every vertex and depot and determine minimum spanning

tree [1] which includes original edges in each cluster for connection between the

edges.
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3. The rural Chinese Postman Problem

Compute CPP route of required subset of edges out of total edges by using the

conventional Chinese Postman algorithm explained in [17].

Figure 2 shows the result of Cluster Algorithm which is applied to the scenario

given in Sec. 2 with four ground vehicles. In this figure, solid line represents the

road visited once and dashed line represents duplicated path for Even graph added

by the CPP algorithm. Total distance of all vehicle is 24340.7 metre and maximum

distance of one vehicle is 7318.3 metre for agent 1.

(a) Agent 1 (b) Agent 2

(c) Agent 3 (d) Agent 4

Fig. 2 Search path result of the cluster algorithm. Solid line is vehicle path visited once and

dashed line is duplicated vehicle path.

3.2 First Route Algorithm

Unlike the cluster algorithm, the First Route algorithm follows a route first - cluster

second approach. In a first step, postman tour which covers all edges is computed,

and then, this tour is divided by k tour segments which have the similar length. This

algorithm is described as follows.

Algorithm description

1. Compute an optimal 1-postman tour C∗ using the conventional Chinese Postman

algorithm

2. Compute splitting nodes

k − 1 splitting nodes (vp1
, . . . , vpk−1

) on C∗ are determined in such a way that

they mark tour segments of C∗ approximately having the same length. Approx-

imated tour segment length, Lj is computed by using Shortest Path Tour Lower

Bound, smax.
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smax =
1

2
max

e={u,v}∈E
{ w(SP (v1, u)) + w(e) + w(SP (v, v1))} (1)

Lj = (
j

k
)(w(C∗ − 2smax)) + smax, 1 ≤ j ≤ k − 1 (2)

where k denotes the number of vehicles, w(a) represents the distance of the

subtour a and SP represents the shortest path between nodes considering road

network. Then, the splitting node vpj
is determined as being the last node such

that w(C∗
vpj

) ≤ Lj . C∗
vn

is the subtour of C∗ starting at the depot node and

ending at vn. The details can be found in [16].

3. k-postmen Tours

Constructed k tours C = { C1, . . . , Ck } by connecting tour segments with short-

est paths to the depot node.

Figure 3 shows the result of the First Route algorithm which is applied to the sce-

nario given in Sec. 2 with four ground vehicles. Total distance of all vehicle is

24340.7 metre and maximum distance of one vehicle is 7818.5 metre for agent 4,

which is slightly longer than the Cluster algorithm. Although both of two heuristic

algorithms are intuitive, easy to implement and show reasonable performance with-

out heavy computation burden for multiple ground vehicles, they can be far from an

optimal solution and difficult to consider characteristic of the vehicle.

4 Coordinated Road Network Search for Multiple UAVs

For the road network search using multiple UAVs, variation of the typical CPP algo-

rithm is required, so that it can consider the operational and physical characteristic

of the UAV in the search problem. As shown in Fig. 4, since the UAV cannot change

its heading angle instantaneously due to the physical constraint, the trajectory has

to meet the speed and turn limits of the UAVs. Moreover, differently from ground

vehicle, the UAV does not have to fly along the road only to cover a certain edge

which is not connected. This modified search problem is formulated as MMKP

which is to find an optimal solution minimizing flight time. Classical MMKP is

to pick up items for knapsacks for maximum total value so that the total resource

required does not exceed the resource constraints of knapsack [13]. For applying

MMKP to the road network search, UAVs are assumed as the knapsacks, the roads

to be searched are resources and limited flight time or energy of each UAV is capac-

ity of knapsack. MMKP formulation allows to consider the limitation of each UAV

flight time and different types of roads, vehicles and minimum turning radius and

get the sub-optimal solution of the coordinated road search assignment. Moreover,

the Dubins path planning produces the shortest and flyable paths taking into con-

sideration their dynamical constraints, thus the Dubins path is used to calculate the

cost function of the modified search problem. The details of proposed road network

search algorithm for multiple UAVs are as follows.
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(a) Agent 1 (b) Agent 2

(c) Agent 3 (d) Agent 4

Fig. 3 Search path result of cluster algorithm. Solid line is vehicle path visited once and

dashed line is duplicated vehicle path.

4.1 Generation of the Shortest Edge Permutation

First, unordered feasible edge permutation is generated with a given petal size. Petal

size means the maximum number of edge that can be visited by one UAV and it is

determined by available resources of each UAV. In case that the end vertex of one

edge and any vertex of next edge are not connected, connect them with the edge

which has shorter distance. Then, shortest order-of-visit edge permutation among

the permutations which consist the same edges is computed under the assumption

that the path is line.

4.2 Dubins Path Planning

Once shortest edge permutations are determined, next step is to compute and store

the cost (path length or flight time) of them. After UAVs complete their mission,

Fig. 4 Road network Search

by UAV
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(a) The 2D Dubins arc geometry (b) Determination of intermedi-

ate pass angle

Fig. 5 Geometry of Dubins path planning

since they should come back to the depot, line path from the end of edge permuta-

tion to the depot is connected additionally. In this step, this study uses the Dubins

path which takes into account the orientation and path constraints of the UAV in-

stead of using Euclidean distance of each edge. The Dubins path is the shortest path

connecting two configuration under the constraints of a bound on curvature. It is

formed either by concatenation of two circular arcs with their common tangent or

by three consecutive tangential circular arcs. Using the principles of differential ge-

ometry, the Dubins path can be determined by curvature in two dimensions [18]. For

the 2D manoeuvre, the initial and final tangent vectors are coplanar and the straight

line manoeuvre is not uniquely defined for this case and it must be calculated. The

Dubins arc is shown in Fig. 5(a). The vector sum for the position vector p which is

a position of the final point pf relative to the start point ps in start axes is given by:

p = pf − ps = rs − as + ac + af − rf (3)

This equation can be arranged for the vector c which connects the centres of the

turn circles as:

c = ctc = p − rs + rf = −as + ac + af (4)

where tc and c are the centre vector and its length, respectively. The connecting

vectors as, af and ac can be written in terms of the start basis vectors. Then, the

centre vector equation, Eqn. (4) now becomes:

c = ctc = R(θs)
′
(

a
±1
κf

− ±1
κs

)

(5)

where a is the distance of vector ac, θs denotes the rotation angle of the first turn,

R(θs) represents direction cosine matrix, and κs and κs are the maximum curvature

of initial and final turn, respectively. If both initial and final angle are given, a set

of four paths are produced and the shortest path is selected. In this paper, the pass

angle for the Dubins path is determined by simple geometry. First of all, consider

the edge vectors defined by the three vertices vi−1, v, and vi+1, and let path unit
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vector wi and wi+1 and unit vector along the bisector of the angle formed by the

three vertices w̄ as in Fig. 5(b). Then, the intermediate pass angle β which makes

the path remain near the roads is given by Eqn. (6). Initial and final angle of each

permutation are assumed to be zero.

β = tan−1(
w̄y

w̄x

) ±
π

2
(6)

4.3 MMKP Formulation and MILP Optimisation

Final step of the proposed algorithm is to allocate edge permutation to each UAV

to cover every edge with the minimum total time. This can be expressed MMKP

formulation and given by:

min J =

NUAV
∑

i=1

Npi
∑

j=1

Tjxij

subject to

NUAV
∑

i=1

Npi
∑

j=1

Ekjxij ≥ 1, k ∈ { 1, . . . , Nedge } (7)

Npi
∑

j=1

xij = 1, i ∈ { 1, . . . , NUAV }

xij ∈ { 0, 1 } , i ∈ { 1, . . . , NUAV } , j ∈ { 1, . . . , Npi
}

where NUAV , Nedge, and Npi
denote the number of UAVs, edges to be visited

and permutaions generated by the i-th UAV, respectively. Tj represents mission cost

(flight time) of j-th permutation and Ekj represents the matrix whose k-th element

of j-th permutation is 1 if edge k visited, otherwise 0 and xij is either 0, implying

permutation j of the i-th vehicle is not picked, or 1 implying permutation j of the i-
th UAV is picked. First constraint represents that UAVs should visit every edge once

or more and second one represents the allocation of the exact one edge permutation

to the each UAV. This MMKP problem is solved by SYMPHONY MILP (Mixed

Integer Linear Programming) solver [19].

5 Numerical Simulations

To evaluate the performance of the proposed search algorithm, numerical simulation

is performed with four UAVs and the map given in Sec. 2. UAVs have the following

characteristic:

• Minimum turning radius ρmin: [50 40 30 30] metre

• Maximum cruise speed Vc,max: [40 35 25 25] m/s

Maximum curvature κmax of UAVs for the Dubins path can be computed by

κmax = 1/ρmin. UAVs are assumed to have maximum cruising speed during entire
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(a) UAV 1 (b) UAV 2 (c) UAV 3

(d) UAV 4 (e) Total UAV paths

Fig. 6 Multiple UAVs road search result

simulation and maximum petal size of edge permutation is set to 4. Figure 6 shows

the road network search result. It can be observed that the longest flight path is given

UAV 1 whose speed is the fastest among four UAVs and flight path is smooth and

flyable due to the Dubins path planning. Moreover, every roads are searched once

and UAVs come back to the depot as shown in Fig. 6(e). As explained in the pre-

vious section, since the UAV does not need to fly along the road only to cover all

edges for the minimum time, the road search result includes additional paths which

connect some of edges or the edge and depot.

6 Conclusion

This paper described a coordinated road network search synthesis for multiple

UAVs. This paper first defined a road network search problem as a graph and dealt

with it using the conventional CPP algorithm. For the application to multiple UAVs,

the search algorithm was modified in the consideration of the physical constraint of

UAVs. The modified problem was solved by the proposed synthesis which mainly

consists of the Dubins path planning and MMKP formulation for the shortest and

flyable path with the minimum time solution. The performance of the proposed syn-

thesis was verified via numerical simulation for the given map.
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Eigenstructure Assignment and Robustness 
Improvement Using a Gradient-Based Method 

Erik Karlsson, Stephan Myschik, and Florian Holzapfel* 

Abstract. This paper presents a gradient-based method for increasing the robustness 

of multivariable systems, measured by the stability margins of the broken SISO 

loops. The method uses iterative perturbations of the closed loop eigenvalues to 

minimize a certain cost function containing weighted gain and phase margins and 

the variation of the eigenvalues. The initial and perturbed closed loop dynamics are 

specified using eigenstructure assignment. The algorithm presented is used in the 

gain design process of the lateral part of the flight control system for a generic trans-

port aircraft. Results obtained with this novel approach are analyzed regarding the 

SISO and MIMO stability margins. 

1   Introduction 

The eigenstructure assignment method for assigning the dynamics of multivariable 

systems has been widely used in the aerospace sector, especially in the design of 

aircraft flight control systems ([7], [11], [12]). The method offers great freedom in 

the eigenvalue placement via state or output feedback. Extra degrees of freedom 

provided by independent control inputs can be utilized to specify parts of the cor-

responding eigenvectors. However, with the exact assignment of eigenvalues and 

eigenvector components, the method features no optimization of the robustness of 

the closed loop system compared to other multivariable design techniques such as 

∞H loop-shaping ([10]). As the requirements on the closed loop eigenvalues  
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are rarely defined as absolute values, a slight variation is usually allowed. This 

provides room for increasing the robustness using numerical algorithms. 

Several approaches to a more robust eigenstructure assignment have been  

presented, e.g. multi-objective optimization via genetic algorithms ([5], [6]) or  

eigenvector projection methods ([9]). 

The well-known gain and phase margins for single-input/single-output (SISO) 

systems have since long been used as a measure of robustness for such systems. In 

general, they cannot be applied straight forward on the different loops of multiple-

input/multiple-output (MIMO) systems. This is due to the fact that the SISO mar-

gins only consider uncertainties present in one loop. Uncertainties may be present 

in multiple loops, and have cross-coupling effects not considered by the SISO 

margins. The SISO margins have however been extended to multivariable systems 

using the minimum singular value of the return difference ([2], [3]) and further on 

using structured singular value analysis ([10], [13]). In flight control applications, 

stability margin requirements are however given as gain and phase margin re-

quirements on the SISO loops.  

This paper presents a first order gradient-based algorithm aiming at optimizing 

the SISO stability margins. This is done by an iterative perturbation of the closed 

loop eigenvalues in a direction, which minimizes a cost function containing the 

SISO margins and the eigenvalue perturbations. The MIMO margins are however 

also examined in order to ensure robust stability for the entire system.  

The paper consists of the following parts. First, an approach to the eigenstruc-

ture assignment for a general multivariable system is given, with a pseudo-inverse 

based projection to find the best achievable eigenvectors ([4]). The MIMO stabil-

ity margins are presented using the structured singular value of the sensitivity 

function matrix. Then, a gradient-based algorithm for improving the closed loop 

stability margins via eigenvalue perturbations is presented. Thereafter, the pre-

sented gradient-based algorithm is used in the gain design of the lateral-directional 

part of a flight control system for a generic transport aircraft. The results are ana-

lyzed regarding the SISO and MIMO stability margins. In the last part, conclu-

sions are drawn from the results. 

2   Eigenstructure Assignment 

The eigenstructure assignment procedure described in this section follows the one 

given in ([4]), other approaches can be found in ([6], [9], [11], [12]).  

Consider a linear, time-invariant, multivariable system on state space form 

( ) ( ) ( )ttt BuAxx +=$ ,                                                      (1) 

with system matrix 
nn

R
×∈A , input matrix 

mn
R

×∈B , state vector 
n

R∈x  and in-

put vector mR∈u . The system has m independent control inputs. Assuming all 

states are not available for feedback, output feedback is used. The output equation 

is given by 
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( ) ( )tt Cxy = ,                                                       (2) 

with output matrix nrR ×∈C  and output vector 
r

R∈y . The control law 

( ) ( ) ( )ttt CuKyu +−= ,                                                (3) 

with the constant feedback matrix 
rm

R
×∈K  and commanded input ( )tCu  leads to 

the closed loop dynamics 

( ) ( ) ( ) ( ) ( ) ( )ttttt CC BuxABuxBKCAx +=+−=
~$ .                        (4) 

Purpose of the control design is now to determine the feedback gain matrix K in 

such a way that the closed loop system matrix ( )BKCAA −=
~

 is given the de-

sired dynamics. The closed loop eigenvalues iλ  and corresponding right eigenvec-

tors iv  are determined by the equation (5). 

( ) iii λ⋅=⋅− vvBKCA , ni ,...,1= .                                  (5) 

Equation (5) can be rewritten on matrix form to include the input directions 

ii KCvz = . This leads to equation (6). 

[ ] [ ] 0
z

v
BAI

KCv

v
BAI =⎥⎦

⎤⎢⎣
⎡

⋅−=⎥⎦
⎤⎢⎣

⎡
⋅−

i

i

i

i

i

i λλ .                         (6) 

The desired eigenvalues of the closed loop system must not be the same as those 

of the open loop system, i.e. the matrix [ ]BAI −iλ  must have full rank (be in-

vertible). All nontrivial solutions iv , iz  to the equation system (6) must be within 

the null space (the kernel) of the matrix [ ]BAI −iλ . This means that any possi-

ble solution can be described as a linear combination of the base vectors in  of the 

null space. The null space base vectors can be divided into one upper part in  re-

lated to the eigenvectors, and a lower part in̂  related to the input vectors. 

[ ] ⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎦
⎤⎢⎣

⎡
==

i

i

ii

ii

iii
m

m

m

λ

λ

λλ

λλ

λλλ
N

N

nn

nn
nnN ˆˆˆ

,,1

,,1

,,1 A
A

A .                     (7) 

Now, the achievable eigenvectors can be written as 

[ ]
i

i

i

ii

i

i

ii

m

m

i

i

l

l

λ
λ

λ

λλ

λ

λ

λλ l
N

N
lNnn

z

v
⋅⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⋅=
⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
⋅=⎥⎦

⎤⎢⎣
⎡

ˆ

,

,1

,,1 BA ,                       (8) 

where 
iλl  is an arbitrary m-dimensional parameter vector. Sorting matrices 

( )
ns

S

i ×
P  and ( )( ) nsn

U

i ×−
P  are introduced to sort the elements of the eigenvectors in 
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those specified (number of specified elements is s ) and those unspecified (num-

ber of unspecified elements is hence sn − ). Elements of greater importance are 

specified, whereas lesser important elements remain unspecified. This leads to 

equation (9).  

( )
( )( )

( )
( )( )

i

nsn

U

i

ns

S

i

sn

U

i

s

S

i
v

P

P

v

v
⋅⎥⎥⎦
⎤

⎢⎢⎣
⎡

=⎥⎥⎦
⎤

⎢⎢⎣
⎡

×−

×

×−

×

1

1 .                                      (9) 

Through the use of a weighting matrix 
iλQ  the elements of the desired eigenvec-

tor can be assigned greater or lower importance, giving the weighted desired  

eigenvectors 

S

id

S

id i
vQv ⋅= λ ,                                                  (10) 

and the relation between the desired eigenvectors S

idv  and the parameter vector 

iλl , described by equation (11). 

( ) ( ) ( ) ( ) ( )
11 ×××××

⋅⋅=⋅
mms

S

sss

S

idss iiii λλλλ lNQvQ .                          (11) 

Now two different cases are possible. If the number of elements to be specified is 

equal to the number of independent control effectors available, i.e. s = m, an exact 

assignment of the specified eigenvector elements is possible. In this case the pa-
rameter vector is given by 

[ ] S

id

S

iiii
vQNQl ⋅⋅⋅=

−

λλλλ

1
.                                       (12) 

If the number of elements to be specified is larger than the number of control ef-

fectors available, i.e. s > m, no exact assignment is possible. By using a (Moore-

Penrose) pseudo-inverse based projection onto the null space, the parameter vector 

can be calculated according to 

( )[ ] ( ) S

id

HSSHS

iiiiii
vQNNQNl ⋅⋅⋅⋅⋅=

−

λλλλλλ

1

.                          (13) 

With the best achievable parameter vector known (either through exact assignment 

or approximated through projection on the null space), the achievable eigenvector 

and the corresponding input directions are given by 

iii λλ lNz ⋅= ˆ , 
iii λλ lNv ⋅= .                                         (14) 

This leads to the desired gain matrix, shown in equation (15). 

[ ] [ ]( ) 1

2121

−
⋅⋅= rr vvvCzzzK AA .                    (15) 

The resulting gain matrix now places the closed loop eigenvalues as desired, and 
yields the specified eigenvector elements or their best approximation. 
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3   Robustness Enhancement Using a Gradient-Based Method 

The method described in this section aims at increasing the gain and phase mar-

gins of the broken SISO loops of the closed loop system. The robustness of such a 

system can either be measured by the mentioned stability margins of each broken 

loop, assuming uncertainties only occur in one loop at a time. Or, more general, 

using the conservative multivariable stability margins, which consider concurrent 
uncertainties in multiple loops ([1]).  

The multivariable stability margins are in the following given using the struc-

tured singular value of the sensitivity function matrix.  

Consider a generalized multiple-input/multiple-output system with plant G  

and constant feedback matrix K , extended by an inverse multiplicative input un-

certainty matrix { }mdiag ∆∆= ,...,1Δ  containing uncertain elements ki

kk er
φ⋅=∆ , 

mk ,...,1=  (uncertain complex numbers located within a circle of radius kr  [10]), 

see Fig. 1. The transfer function from the output w  of the uncertainty block to the 

input z  is then given by 

[ ] wSwGKIz ⋅=⋅⋅+=
−1

,                                      (16) 

where S  is the sensitivity function at the actuator inputs. The system can now be 

represented by a structure containing only S  and Δ , connected via w  and z . 

Assuming S  is stable, robust stability for such a system is guaranteed (for all al-

lowed perturbations) if and only if the Nyquist plot of ( )[ ]ωjSΔI −det  does not 

encircle the origin, i.e. when ( )[ ] 0det ≠− ωjSΔI , Δ∀∀ ,ω  ([10]). The structured 

singular value ( )Sµ  of the sensitivity function is defined as the inverse of the 

smallest gain c  which destabilizes the system ( c/1=µ ), i.e. for which 

( )[ ] 0det =− ωjcSΔI . This definition of robust stability of the SΔ -system can now 

be written as 

( )( ) ( )( ) 1<⋅ ωσωµ jj ΔS , ω∀ .                                       (17) 

 

 

Fig. 1 Multivariable feedback system with uncertainties. 
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This means that robust stability is guaranteed when the product of the structured 

singular value of the sensitivity function and the maximum singular value of the 

uncertainty matrix is less than 1 for all frequencies (a “generalized small gain 

theorem”) ([10]). Since ( )ωjS  is a frequency dependent function matrix, robust 

stability is ensured only when the maximum singular value of the uncertainty ma-

trix is smaller than the minimum value of the inverted structured singular value of 

the sensitivity function over all frequencies. This leads to the relation (18). 

( )
( )( )ωµ

σ
ω j

k
R S

Δ 1
minmin

∈
=< .                                        (18) 

With the definition of the minimum value of the inverted structured singular value 

of the sensitivity function matrix, mink , the multivariable gain and phase margins 

are given in ([3]). They are defined in equation (19). 

min1

1
GM

k±
= ,  θ±=PM  with ⎟⎠

⎞⎜⎝
⎛

⋅=
2

arcsin2 mink
θ .                      (19) 

The different loops of the system may be disturbed by a set of gains ∆  satisfying 

the condition ( ) ( )minmin 1/11/1 kk −<∆<+ , or by phases θ  satisfying the condi-

tion ( )2/arcsin2 mink<θ , without leading to an unstable closed loop system.  

The aim is now to perturb the closed loop eigenvalues, given by the eigenstruc-

ture assignment, in order to increase the gain and phase margins of the broken 

loops of the system. The loops are cut both at the actuator inputs and at the sensor 

outputs. When one loop is cut open, the others remain closed.  Assuming the 

number of actuator inputs is q  and the number of sensor outputs is r , the task can 

be formulated as a constrained optimization problem with the cost function to be 

minimized given by 

( ) ( ) ( ) ( ) ( )

( ) ( )dp

T

d

PMPM

T

PMGMGM

T

GME

ppWpp

pvWpvpvWpvp

−−+

+−−=

2

1

2

1

2

1

                 (20) 

with vectors rq

PMGM R
+∈vv ,  containing the cut loop gain and phase margins. 

The parameter vector l
R∈p  contains those of the closed loop eigenvalues al-

lowed to be varied (or some parameter given by the eigenvalues, e.g. relative 

damping or natural frequency, time constants etc.). The vector l

d R∈p  consists of 

the corresponding desired values. Weighting matrices )()(, rqrq
PMGM R

+×+∈WW  

consider the gain and phase margins and ll

p R
×∈W  weights the eigenvalue  

variations. All weighting matrices are diagonal and positive definite. The weight-
ing matrices can either be identity matrices, or chosen to emphasize the improve-

ment of certain gain or phase margins. One approach is to specify the weighting 
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coefficients according to the relative distance of the corresponding margin from a 

certain required value. The smaller the margin, the more weighted it is. Thus, the 

algorithm focuses on improving the worst margins. 

The constraint under which the cost function is to be minimized is that the  

eigenvalues remain within the boundaries defined by certain maximum and  

minimum values, maxmin ppp ≤≤ . The cost function is iteratively minimized  

using a variation of the eigenvalue parameter vector given by the steepest descent 

direction, 

( )
p

p
p

∂

∂
⋅−=∆

E
η ,                                                 (21) 

with the step length 0>η . The step length selection is a tradeoff between a suffi-

cient reduction of the cost function and the computation time of finding the appro-
priate step length. The selection method chosen is based on the Armijo sufficient 

decrease condition ([8]), ensuring that the step length is not chosen too small. The 

step size is iteratively increased from an initial value until an appropriate step 

length is found, fulfilling the condition 

( ) ( ) EEcEEE
T ∇∇−≤∇− ηη pp ,                                  (22) 

for a constant [ ]1,0∈c . A maximum step length is also defined in order to limit the 

selection computation time. When performing a gain design over thousands of 

grid points, the number of iterations in each point greatly influences the total com-

putation time. The gradient of the cost function is given by equation (23).  

( ) [ ] [ ]

( ).dp

T

PMT

PMPM

T

GMT

GMGM

E

ppW

p

v
vW

p

v
vW

p

p

−+

+⎥⎦
⎤⎢⎣
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⎤⎢⎣

⎡
∂

∂
⋅−⎥⎦

⎤⎢⎣
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⎤⎢⎣
⎡

∂

∂
⋅−=

∂

∂

         

 (23) 

The Jacobian matrices of the gain and phase margin vectors,  
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have to be determined through numerical differentiation, e.g. using Newton’s dif-

ference quotient, given by 

( ) ( )

j

iji

j

i

p

vv

p

v

δ

δ ppp −+
=

∂

∂
, rqi += ,...,1 , lj ,...,1= .                     (25) 

Here 
jpδ  is a vector with a small step jpδ  in the j:th parameter. When the pa-

rameter vector is varied by p∆ , the value of the cost function is decreasing  

according to 
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If the calculated variation p∆ leads to a parameter vector not satisfying the con-

straints, the elements exceeding are adjusted and set to the closest bound.  

This algorithm leads to an improvement of the included stability margins under 

the given constraints on the eigenvalue variation.  

4   Implementation and Results 

The eigenstructure assignment method is implemented in the gain design of the 

lateral control system for a generic transport aircraft, described in detail in [4]. 

The model dynamics is linearized for horizontal, straight-forward flight at an alti-

tude of 6000 m and a Mach number of 0.4. The aircraft configuration features a 

total mass of 110 tons. Flaps and gear are retracted.  

The inherent dynamics has roll and spiral mode time constants 99.0=RT s and 

4.27=ST s. The Dutch roll dynamics is given by the relative damping 

171.0=DRζ  and natural frequency 633.0,0 =DRω  rad/s.  

A control allocation scheme converts the lateral control effectors aileron, rud-
der and roll spoilers into two independent virtual controls for the creation of roll-

ing and yawing moments, [ ]TYawRoll δδ ,=u , giving the possibility to decouple the 

roll and yaw axis.  

The initial roll mode time constant, 4.1, =dRT  s, ensures level 1 handling quali-

ties. With this choice, level 1 handling qualities for the given aircraft can still be 

achieved while obeying maximum control surface deflections in the linear gain 

design process. An inherently stable spiral mode ( 0.1, =dST  s) is chosen to pro-

vide automatic wings leveling for small bank angles and bank angle resistance to 

disturbances. A PI-command filter, not described in this paper, provides neutral 
spiral stability from the pilot’s point of view ([4]). The desired Dutch roll dynam-

ics is given by the relative damping 2/2, =dDRζ  and a natural frequency 

0.2,,0 =dDRω  rad/s.  

The linearized lateral model contains the stability axis roll and yaw rate, the 

sideslip and roll angle, the integrator states for the control error integration as well 

as the position and translational states of the actuators. The output vector used for 

feedback contains all but the actuator states, [ ]TIISS pry ββ ,,,,, ΦΦ= . The two 

independent control variables make it possible to exactly assign two elements of 

each eigenvector.  

Roll rate and angle are set to zero in the Dutch roll eigenvector, yaw rate and 

angle of sideslip to zero in the roll and spiral mode eigenvectors.  

After the initial eigenstructure assignment, the eigenvalues are perturbed  

iteratively and reassigned, with the parameter vector [ ]TDRDRRS TT ,0,,, ωζ=p   
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Table 1 Stability margins before and after robustness enhancement. 

  Before After Relative change 

GM [dB] [-5.40, 17.21] [-5.49, 18.46] [+1.7%, +7.3%] 
MIMO 

PM [º] 51.07 52.25 +2.3% 

GM [dB] 32.36 34.72 +7.3% 
Roll 

PM [º] 71.15 72.35 +1.7% 

GM [dB] 26.54 27.42 +3.3% 
Yaw 

PM [º] 57.41 62.03 +8.1% 

GM [dB] 27.50 28.18 +2.5% 
Sr  

PM [º] 78.77 81.24 +3.1% 

GM [dB] 27.44 29.63 +8.0% β  
PM [º] 57.79 62.75 +8.6% 

GM [dB] 32.89 35.21 +7.1% 
Sp  

PM [º] 108.21 119.83 +10.7% 

GM [dB] 28.04 29.79 +6.2% 
Φ  

PM [º] 61.20 62.14 +1.5% 
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Fig. 2 Gain margins for the broken SISO loops, measured at the actuator inputs and sensor 

outputs. 
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Fig. 3 Phase margins for the broken SISO loops, measured at the actuator inputs and sensor 
outputs. 
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Fig. 4 Curves for the parameter vector elements.  

containing the roll and spiral mode time constants and the Dutch roll dynamics. 

The elements of the parameter vector are bounded, constraining the adjusted 

closed loop dynamics to remain within specified limits, in this case 4.1≤ST s, 

8.1≤RT s, 8.0≤DRζ  and 6.1,0 ≥DRω . 

The SISO stability margins before and after the iterations are presented in Ta-

ble 1 together with the MIMO margins. All gain and phase margins have been im-

proved by the algorithm. Especially large improvements can be seen in the phase 

margins of the yaw control input and the roll rate and angle of sideslip sensor out-
puts.  Fig. 2 shows how the gain margins at the actuator inputs and sensor outputs 

are improved during the iteration. Fig. 3 depicts the corresponding phase margins. 

It can be observed how the roll command and the roll rate and angle sensor gain 

margins show similar curves during the iteration. When compared to the changing 

closed loop dynamics described in Fig. 4, the roll gain margins are depending on 

the roll and spiral mode time constants. The roll command and roll rate phase 
margins have the same dependence in Fig. 3. Gain margins of yaw command and 

yaw rate sensor are at first decreasing as the Dutch roll relative damping is in-

creasing. When the damping reaches its maximum allowed value, the yaw margins 

start to increase again, and keeps increasing until the Dutch roll natural frequency 

reaches its minimum value.  

5   Conclusions 

The presented gradient-based algorithm offers a simple and fast way of improving 

the stability margins of a multivariable system via iterative perturbations of the 

closed loop eigenvalues. It has been successfully implemented in combination with 
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an eigenstructure assignment algorithm and is used in the gain design process of a 

flight control system for the lateral motion of a generic transport aircraft. The algo-

rithm has been shown to converge to the best eigenvalues, minimizing the cost func-

tion under the given constraints. The stability margins of the SISO loops as well as 

the multivariable stability margins are increased. By examining how the stability 
margins vary with the parameters of the closed loop dynamics, relations between 

specific margins and time constants or damping/frequencies can be identified. 

The focus of the presented method has been the applicability to real control de-

sign problems. The method has been proven useful on a typical problem in flight 

control design: vary the closed loop dynamics within limits in order to achieve 

improved gain and phase margins.  
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Helical Flight Path Trajectories for Autopilot
Evaluation

Gertjan Looye

Abstract. A helical flight path trajectory (helix) involves flying exact circles over

the ground while climbing or descending at a given flight path angle and speed

profile. The manoeuvre is challenging to fly in windy conditions, since the path

reference is inertial whereas the aircraft naturally tends to move with the air mass.

Tracking a helix introduces periodical lateral and longitudinal wind shears in turn.

This makes the helix an excellent manoeuvre for testing autopilot control laws, al-

lowing to evaluate co-ordination of longitudinal and lateral modes, tracking accu-

racy along a curved flight path, combined tracking of inertial (flight path) and air

mass-based references (airspeed), and to evaluate the trade-off between behaviour

in turbulence and wind shear. Since helical flight path trajectories are not a standard

option in most autopilot / flight management systems, this chapter derives generally

applicable reference variables and high-level control strategies for use with typical

autopilot structures. This allows the reader to fly the helix manoeuvre using his or

her own autopilot design. As an example, simulation and flight test results for an

autopilot developed for DLR´s test aircraft ATTAS will be discussed.

Nomenclature

m aircraft mass

g acceleration of gravity

h altitude

n number

r position vector

v velocity vector

y lateral position

D distance

N1 engine fan shaft speed

R radius

V velocity

β side slip angle

χ track angle (course)

γ flight path angle

µ bank angle

φ roll attitude angle

θ pitch attitude angle

τ filter time constant

Abbreviations, subscripts

c commanded

compl complementary

e error

ref reference

A air mass referenced

AC aircraft

AP autopilot

CAS calibrated airspeed

I inertial

W wind

(See also Table 1)

Gertjan Looye

German Aerospace Center, DLR–Oberpfaffenhofen, Institute of Robotics and Mechatronics

e-mail: Gertjan.Looye@dlr.de

Gertjan.Looye@dlr.de
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1 Introduction

A major challenge in the design of autopilot flight control laws is to achieve sat-

isfactory closed-loop aircraft performance during severe atmospheric disturbances,

like wind shears, turbulence and wake vortices. Especially in the case of passenger

aircraft, besides tracking accuracy of velocity and flight path, careful attention has to

be paid to aspects such as ride comfort, control (throttle!) activity, and safety limits.

During several projects the DLR Institute of Robotics and Mechatronics was in-

volved in, helical flight path trajectories were found to be extremely useful to assess

design aspects listed above. During a helix manoeuvre, one basically encounters a

considerable amount of challenges in autopilot design: co-ordination of longitudinal

and lateral modes, accurate tracking of a flight path that is continuously ”bending

away”, and combined tracking of inertial (the flight path) and air mass-based refer-

ences (the airspeed). From an atmospheric point of view, during a helix manoeuvre

even little constant wind results in continuous wind shears in lateral and longitudinal

directions.

The idea of performing the helix test manoeuvre came from publications by

Kaminer and Lambregts. Kaminer flew small UAVs along helical flight paths for

observation purposes [1], also proposing the trajectory as a benchmark. Lambregts

demonstrates the ability to accurately fly circular ground tracks in windy conditions

using a Control Wheel Steering mode developed in the NASA TCV program [2].

This chapter will focus on the helix manoeuvre as a benchmark trajectory for

autopilot control laws. Using flight mechanics principles, generally applicable ref-

erence variables and high-level control strategies for autopilot control laws are de-

rived, allowing the reader to make his or her autopilot to fly this manoeuvre for

testing purposes. As an example, the results from simulations and a recent flight

test using DLR´s ATTAS aircraft will be discussed, highlighting interesting design

aspects that are typically revealed by flying the proposed benchmark trajectory.

2 The Helix Trajectory

This section geometrically describes the helix trajectory and discusses relevant flight

mechanical aspects. The trajectory as used in this work is depicted in Fig. 1. It starts

at the point Init and ends at the point Final. The over-all manoeuvre begins with a

straight segment. This allows for easy capture by the aircraft using standard func-

tionality in the autopilot. Geometrically, the actual helix is initiated at the point

where the initial straight segment perpendicularly passes the helix centre. After the

helical segment, the trajectory ends with a straight segment, providing a clear and

safe point to stop the manoeuvre by making sure the aircraft is in trimmed, wings

level flight. Handling the discontinuous transitions between the straight path seg-

ments and the actual helix will be discussed in Section 3.3.

The trajectory is defined by the parameters in Table 1. The objective for an au-

topilot is to capture the initial straight segment of the helix manoeuvre, track the

inertial helix flight path at a commanded VCAS (which may be varied during the task,
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Table 1 Parameters describing the helix trajectory in Fig. 1

Helical segment: Initial and final straight segments:

rcenter GPS position of the helix center

Rhelix Helix radius

VCAShelix
Calibrated airspeed VCASinit

VCAS f inal
Calibrated airspeed

hend Altitude at which helix ends hinit – Initial altitude

nturn Number of full turns γinit γ f inal Inertial flight path angle

dir Direction (counter-) clockwise χinit χ f inal Inertial track angle

of course), and return to steady symmetric flight, ending at the point marked Final.

The challenge is to make sure the ground track is a single circle, even in case of

steady wind. The control strategy to achieve this can be derived from basic flight

mechanics principles, as will be discussed in the following.

Fig. 2 shows the true airspeed vector vA (magnitude VA), wind vector vW (mag-

nitude VW ) and the inertial speed vector v (magnitude V , necessarily tangent to the

circle). The variables VW and χW are given wind speed and direction respectively.

Furthermore, the variables VA and χ are the momentary airspeed and track angle on

the reference trajectory respectively. It is of interest to compute V and the crab angle

χcrab = χA − χ (χA as defined in Fig. 2) that are necessary to stay on the circular

path. Assuming that cosγA ≈ 1,cosγW ≈ 1,cosγ ≈ 1 (with γA the air mass-referenced

flight path angle), it is easy to derive the following two equations:

V = VW cos(χW − χ)+
√

V 2
A −V 2

W sin2(χW − χ) (1)

χcrab = −arcsin

(

Vw sin(χW − χ)

VA

)

(2)
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The inertial speed and crab angle thus vary as a function of the angular position of

the aircraft on the helix path. This is illustrated in Fig. 3, where the inertial speed

and crab angle have been plotted as a function of the track angle during a full turn.

The numbered wind conditions correspond with Fig. 2.

The term Vw sin(χW − χ) in equation 2 is the lateral wind component w.r.t. the

inertial flight path (positive to the right). Its time derivative is the lateral wind shear

that has to be compensated for:

−VW cos(χW − χ)χ̇, with: χ̇ =
V cosγ

Rhelix

(3)

The autopilot thus has to make sure the crab angle is continuously adapted in order

to stay on the circular track. This is usually already achieved by feedback of χ
and sufficient weather cock stability, e.g. provided by a good yaw damper. More

important is the effect on the bank angle µ required to maintain a circular flight

path. This angle is easily derived from lateral equilibrium in a co-ordinated turn [3]:

mV 2 cos2 γ

Rhelix

= mg tan µ so that: tan µ =
V 2

gRhelix

cos2 γ =
V

g
χ̇ cosγ (4)

where g is the acceleration of gravity. Since V varies as a function of the track angle,

the bank angle µ must vary as well in order to keep the horizontal distance to the

centre of the helix constant. An example for γ = 0 is depicted in Fig. 4.

At this point, it is interesting to make a short side step to two more scenarios.

Constant airspeed / bank angle turn

Maintaining a constant bank angle based on a constant airspeed results in turning

relative to the moving air mass:

tan µ =
V 2

A

gRhelix

cos2 γA (5)
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This equation (usually with γA = 0) is incorrectly used in some text books. The

constant bank angle causes a superposition of the moving air mass due to wind and

the turning aircraft, causing it to circle away from the helix centre. Fig. 5 compares

the trajectories resulting from continuously adapting and constant bank angles.

Constant ground speed turn

Returning to eqn. 4, it is obvious that in case a constant bank angle is desired while

staying on track, this can only be achieved by maintaining a constant ground speed.

This is not common practice, but it was for example used by the autopilot of the

Lockheed SR-71 Blackbird, since reconnaissance sensors required (near) constant

bank angle turns for focusing on their specific targets on the ground [4].

For a more general discussion on flight mechanical aspects of manoeuvring under

significant wind conditions, the reader is also referred to the work of Rysdyk [5].

3 Automatic Helix Tracking

Obviously, the helix trajectory is not a standard mode in autopilot and flight man-

agement systems (FMS). In order to to allow the manoeuvre to be flown by a given

autopilot, appropriate command signals have to be provided. These signals will be

derived from the flight mechanical considerations discussed above.

A typical autopilot control law structure as used in most commercial transport air-

craft is depicted in Fig. 7. Only relevant connections have been labelled. Most struc-

tures consist of inner loops for stability and command augmentation (SCA), middle

loops for flight path and speed tracking, and guidance loops for lateral (LNAV) and

vertical navigation (VNAV). The signal processing block prepares feedback signals

for use by the autopilot loops, including computation or estimation of variables not

measured directly, smoothing airdata signals by complementary filtering with ap-

propriate inertial measurements, etc.
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The VNAV and LNAV functions are usually provided by the FMS; the flight

path and speed tracking modes may also be directly controlled by the pilot via the

Flight Control Unit (FCU). Most Flight Management Systems use the available au-

topilot altitude and climb modes for vertical navigation by commanding appropriate

altitude (hc) and flight path angle (γc) or rate of climb commands (ḣc). Lateral navi-

gation is usually done using an internal LNAV control law that generates roll angle

commands (φc) for the autopilot SCA loops. Alternatively, the FMS may provide

lateral path error (ye), turn rate (χ̇c) and track angle (χc) commands to an autopilot

LNAV mode.

3.1 Lateral Control Strategy

Fig. 6 sketches the a top view of the situation in which the aircraft has drifted away

from the reference circular flight path. The intention is to maintain constant cali-

brated airspeed (VCAS), without imposing time constraints on the navigation along

the helix path. Therefore, as a reference for computing position errors and track an-

gle commands, always the momentary radial line is used. This line is computed in

local geodetic co-ordinates from the aircraft and helix centre GPS positions, using

algebra and parameter values that come with the WGS-84 standard [6]. From the

radial line, the currently desired track angle χc can be easily determined and pro-

vided to the autopilot. The radius error Re = RAC −Rhelix is provided as the lateral

path error (ye, see Fig. 7). The commanded turn rate is Vground/ Rhelix (eqn. 3), where

Vground is the momentary ground speed (Vground = Vcosγ). The nominal bank angle

command is to be computed from eqn. 4 (not eqn. 5!). Most autopilot SCA systems

track roll angle (φc) rather than bank angle (µc) command signals, since measured

φ is directly available from most Inertial Reference Systems (IRS)1. For transport

aircraft usually µ ≈ φ , since pitch attitude angles (θ ) are relatively small in most

flight phases. This in turn allows φc ≈ µc.

3.2 Longitudinal Control Strategy

The actual helical flight path starts at an altitude hinit,helix and ends at hend . The

reference altitude depends on the angular position and the number of the turn (see

Fig. 1):

1 For an explanation of the fundamental difference between bank and roll angles, see e.g. [3].
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hc =

(
hend −hinit,helix

2πnturnRhelix

)

(2π(iturn −1)+ χc− χinit)Rhelix + hinit,helix (6)

where iturn is the number of the current turn and hinit,helix is the altitude at which the

helix starts. The first term is the tangents of the desired flight path angle:

tanγc =

(
hend −hinit,helix

2πnturnRhelix

)

(7)

The command signals hc and γc may be directly provided to the autopilot control

laws (Fig. 7).

3.3 Transition to the Helix Trajectory

The complete trajectory as depicted in Fig. 1 contains two important transitions: (1)

from the initial straight segment onto the actual helix and (2) from the helix onto the

final straight segment. These transitions should be well timed and smooth in order to

prevent large path deviations and flight crew discomfort. For vertical path tracking,

most autopilots provide such functionality by early switching to altitude and flight

path angle commands from the next segment (see for example [3]). For lateral path

tracking, a similar technique is used. The functionality is briefly described, since it

is not provided by most autopilots.

Fig. 8 (left) shows a top view of the aircraft about to capture the helix. Even

though the aircraft is still on the straight segment, the geometric angular and po-

sition errors w.r.t. the helix may already be computed. Obviously, the track angle

error would make an autopilot turn the aircraft to the left (µc,track < 0). The radial

error would make it turn right (µc,radial > 0). The reference bank angle, computed

from eqn. 4, is to the right (µc,re f > 0). The best point to capture the helix is where:
∣

∣µc,track

∣

∣ =
∣

∣µc,re f + µc,radial

∣

∣, initially resulting in zero bank angle command. With

the aircraft approaching the helix, µc,track will usually decrease more rapidly than

µc,radial so that the aircraft will slowly bank to the right and nicely capture the cir-

cular flight path. Leaving the helix and capturing the final straight segment can be

done using the very same principles.

Fig. 8 Capturing the first

helix turn

Rhelix
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AC

North

start helix
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���	�
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4 Flight Test and Results

The helix manoeuvre was performed three times during a flight test using DLR´s

fly-by-wire test bed ATTAS (Advanced Technologies Testing Aircraft System) on

June 10, 2009. ATTAS is a highly modified VFW-614 small passenger aircraft with

two turbofan engines [7]). The purpose of the flight test was to evaluate autopilot

control laws developed at the DLR Institute of Robotics and Mechatronics regard-

ing tracking accuracy of flight path and calibrated airspeed, with particular attention

to aspects like ṕiloting,́ mode switching, comfort, and control activity during at-

mospheric disturbances. The autopilot control laws are partly described in [8]; the

SCA and lateral path tracking functions are based on Nonlinear Dynamic Inversion

(NDI), vertical path and speed tracking is based on the Total Energy Control System

(TECS, [9]).

The autopilot command signals were computed as described in the previous sec-

tion and has been implemented in a dedicated software routine. The autopilot LNAV

mode was used. The helix manoeuvre was integrated in landing approaches to run-

way 26 of Braunschweig airport by setting the parameters in Table 1 appropriately,

see Fig. 92. The manoeuvre is initiated in an altitude of 7500 ft (hinit) in the direc-

tion of the runway, with γinit = 0deg. The helix centre (rhelix) is located at a distance

Dhelix = 3200 m before the runway threshold. The latter point is also the reference

for computing local x,y,z co-ordinates. After exactly three full turns the manoeu-

vre ends with the final straight trajectory, which matches the standard ILS approach

path. Shortly before ending the final circle, the ILS signal is checked. If the aircraft

is within the cone, the autopilot changes into its ILS tracking mode. Otherwise,

flight continues in runway direction, but at constant altitude hend . The calibrated

airspeed is held constant at 160 kts (selected by the pilot on the FCU). During the

final quarter of the last turn, it is reduced to the adopted final approach speed of 140

kts. All approaches were followed by a go-around; automatic landing capability had

already been successfully flight tested before [7].

The trajectories as resulting from the flight test are depicted in Fig. 10. The he-

lical approaches are hardly distinguishable and the ground tracks are nearly perfect

circles. This is very encouraging, since the weather conditions were quite challeng-

ing for achieving accurate tracking of the helical flight path. At the airport winds

between 15 and 20 kts from direction 255 deg (runway heading 265 deg) were mea-

sured. At higher altitudes winds up to 28 kts were encountered, see Fig. 11. Between

and below clouds (broken cumulus, base 4000 ft, top 7000 ft) thermal turbulence

was encountered. In the clouds, turbulence levels were considerably higher.

Since the wind conditions were strongest during the first approach, the discussion

in the following will focus on this part of the flight test. The path tracking accuracy

is confirmed by Fig. 12. Here the time along the helix path has been stretched along

the horizontal-axis while the lateral deviation is represented by the vertical axis.

2 This allowed for the organisation of an add-on noise measurement campaign on the

ground, evaluating helical approaches as an alternative potential noise abatement proce-

dure, see [10]. For this reason, also standard Instrument Landing System (ILS) based and

steep landing approaches were flown to provide noise reference values.
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Fig. 9 The helix trajectory

during flight test
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first helical approach

Most of the time the lateral path deviation is well within the wing span of the

aircraft. Two peaks occur: when capturing the helix (left) and when capturing the

ILS path (right). They arise at the moment of switching to the helix path and to

the ILS modes respectively. The error results from the early activation for smooth

capture as discussed in Section 3.3 and nicely demonstrates disturbance rejection

performance.

The next prime tracking variable is the calibrated airspeed. A first challenging

aspect of the helix trajectory is the artificial creation of wind shears relative to the

flight path. This can clearly be seen from Fig. 13, showing the calibrated airspeed

and inertial speed for the first helical approach. Clearly, during the helix the autopi-

lot manages to track the calibrated airspeed reference quite well. As expected, the

ground speed varies considerably (see also Fig. 3). This situation is typical for wind

shear: while holding the airspeed approximately constant, the ground speed gets a

strong gradient.

As briefly addressed in Section 2, it is common practice to smooth air data signals

using complementary filtering. For acceleration feedback, the following signal is

formed:

V̇compl =
s

τs+ 1
VCAS +

τs

τs+ 1
V̇ (8)
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where the time constant τ determines the complementary frequency content of both

measurements. During the helix, the ground speed varies periodically, causing peri-

odical variations in its derivatives as well. This causes continuously nonzero gradi-

ents of the acceleration signal, in turn causing V̇compl to continuously deviate from

V̇CAS. This explains the periodical error in the calibrated airspeed signal in Fig. 13.
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The bank angle during the first helix approach is depicted in Fig. 14. As expected,

it varies strongly as a function of time (compare with Fig. 4) and accurately follows

the values commanded by the autopilot. The side slip angle is quite noisy and not

directly available to the control laws. It therefore is estimated instead [8]. The result-

ing smoothed signal (black) remains within 1 deg during the manoeuvre, indicating

excellent weathercock stability and turn co-ordination.

The crab angle is depicted in Fig. 15. During the initial straight segment (to

the left) a crab angle of two degrees is already necessary due to a small wind
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component from the left. Fig. 16 depicts the altitude profile, comparing measured

and commanded values. The initial error arises at the moment the helix is initiated

and is quickly reduced. The error remains within a 5 m band most of the time.

Larger peaks occur between 100s and 300s, where relatively strong turbulence was

encountered (now shown). The slight undulation is caused by the varying ground

speed.
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Fig. 17 Mean fan shaft speed N1 of both en-

gines

Finally, the mean fan shaft speed of both engines is depicted in Fig. 17. Providing

good tracking performance in considerable turbulence, thrust control activity by the

autopilot was low, very much pleasing the flight crew. This important feature is

attributed to the Total Energy Control System.

5 Summary

Helix manoeuvres are interesting trajectories for evaluating and validating autopi-

lot flight control law performance. The main objectives of this chapter have been

to discuss relevant flight mechanical aspects and to derive appropriate command

signals that allow such a manoeuvre to be flown (in simulation or flight test) by

a given autopilot. As an example, flight test results of an example autopilot have

been discussed, addressing helix-related performance challenges such as path and

speed tracking accuracy, influence of wind shears, engine throttle activity, and path

segment capture behaviour. Detailed metrics for these performance aspects are un-

der development and will allow for quantitative comparison of different autopilot

designs.
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Maneuver Envelope Determination through
Reachability Analysis

E.R. van Oort, Q.P. Chu, and J.A. Mulder

Abstract. Knowledge of the safe maneuvering envelope is of vital importance to

prevent loss of control aircraft accidents. In this paper, determination of the safe

maneuvering envelope is addressed in a reachability framework. The forwards and

backwards reachable sets for a set of initial trim conditions are obtained by solving

a Hamilton Jacobi partial differential equation through a semi-Lagriangian method.

Results obtained using this approach are presented for a nonlinear, high-fidelity,

F-16 aircraft model.

1 Introduction

During the last decades adaptive control in its many forms has received a lot of atten-

tion within the flight control community. These control algorithms are able to deal

with changes in the system’s dynamics due to possible system component faults

and failures. A question that still remains unanswered is which parts of the state

space are safe to operate, often even when the dynamics of the system are com-

pletely understood or assumed known. This question is of fundamental importance

in the safety verification of control systems and system validation. Recent statistics

show that the majority of accidents in aviation nowadays are due to Loss-of-Control

(LOC) [1, 2]. This also shows that LOC is not a phenomenon solely attributed to

military aircraft, but is equally a real problem for commercial aircraft and general

aviation.

The relevance of knowledge of the flight envelope is emphasized by means of

an accident which ultimately is the result of a violation of the safe flight enve-

lope. On October 4, 1992, a Boeing 747 cargo plane crashed into two apartment
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buildings in the Bijlmermeer neighborhood of Amsterdam, near Schiphol Airport.

Engine number three separated from the right wing of the aircraft shortly after take-

off, damaging the wing flaps, and struck engine number four which also separated.

Analysis showed that the aircraft still had marginal controllability left in a severely

restricted flight envelope [3]. Simulator experiments using various different fault

tolerant flight control approaches have shown that landing the aircraft safely was

possible [4, 5, 6]. Additional simulations showed that a very experienced pilot was

able to land the aircraft using the standard control system when he was informed

about the severely restricted flight envelope. However, the Boeing 747 aircraft does

not have such a fault tolerant control system and, more importantly, the pilots did

not have any knowledge about the restricted flight envelope of the aircraft. When

the crew tried to reduce the speed for landing the aircraft banked sharply to the

right without chance of recovery: control of the aircraft was completely lost with

disastrous results.

In this paper a semi-Lagrangian level set approach is taken to obtain the safe

maneuvering envelope for aircraft dynamics that are assumed known. The safe ma-

neuvering set is defined as the intersection between the forwards and backwards

reachable sets for a given set of a-priori known safe states. This approach has been

used to solve fluid flow problems, for example in [7] and [8]. The novelty in this

work is the application of the semi-Lagrangian approach to systems with control

and disturbance inputs, and its application in higher dimensions on kd-tree grids.

The method is applied to a high-fidelity nonlinear F-16 model at different flight

conditions and configurations to demonstrate their effects on maneuverability. The

safe maneuvering sets obtained can be used for trajectory generation, path planning

and controller synthesis, even in post-failure conditions such that safety is improved.

The paper is organized as follows. First, in section 2 the concept of safe maneuver

envelope is defined, and how it can be obtained through reachability analysis. Then,

in section 3 the level set method and the Semi-Lagrangian approach are discussed.

The longitudinal maneuver envelope for an high-fidelity model of an F-16 aircraft

is evaluated in section 4 at different flight conditions. Finally, section 5 draws con-

clusions from the work presented, and states future research directions.

2 Maneuver Envelope and Reachability

The conventional definition of the flight envelope is “[the flight envelope] describes

the area of altitude and airspeed where an airplane is constrained to operate.” [9].

The flight envelope boundaries are defined by various limitations on the perfor-

mance of the airplane, for example available engine power, stalling and buffet char-

acteristics, structural considerations and requirements on maximum noise produc-

tion. A common way to present the flight envelope is the doghouse diagram which

relates the altitude, velocity and possibly other variables at which the aircraft can

safely fly.
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2.1 Flight Envelope Protection

As noted in [10] one of the most promising techniques to prevent LOC-related ac-

cidents is envelope protection. The technique tries to prevent the aircraft from ex-

ceeding the safe maneuvering envelope. A prerequisite for flight-envelope protec-

tion systems is a fly-by-wire (FBW) system. In the FBW, the pilot’s inputs are sent

to a computer which then calculates the desired commands, i.e. there is no direct link

between the pilot and the controls. Such systems have existed for over 30 years but

are currently only used in military aircraft, several commercial aircraft, and a very

limited amount of general aviation aircraft. A prerequisite for protection is accu-

rate knowledge of the maneuvering envelope, both to safeguard against excursions

and LOC events, and not place too conservative constraints on performance of the

aircraft. Furthermore, when the envelope is known, the maneuvering space can be

presented to the pilot to increase situation awareness.

2.2 Safe Maneuvering Envelope

The boundaries defined on the flight envelope in the doghouse plot are adequate dur-

ing normal operation of aircraft. The main problem with the conventional definition

of flight envelope is that only constraints on quasi-stationary aircraft states are taken

into account, for example during coordinated turns and cruise flight. Additionally,

constraints posed on the aircraft state by the environment are not part of the conven-

tional definition. The aircraft’s dynamic behavior can pose additional constraints

on the flight envelope, for example due to inertia coupling effects. Such constraints

would especially be important for military and acrobatic aircraft, aircraft having ex-

perienced upset, and aircraft with airframe and/or actuator damage or malfunctions.

Thus, an extended definition of the flight envelope is required which will be called

the safe maneuver envelope.

Definition 1 (Safe Maneuver Envelope). The safe maneuver envelope is the part

of the state space for which safe operation of the aircraft and its cargo can be guar-

anteed and external constraints will not be violated.

The safe maneuver envelope is defined by the intersection of three envelopes:

• Dynamic Envelope: Constraints posed on the envelope by the dynamic behavior

of the aircraft, due to its aerodynamics and kinematics.

• Structural and Comfort Envelope: Constraints posed by the airframe, pilot, pas-

sengers and cargo. These constraints are defined through maximum accelerations

and loads.

• Environmental Envelope: Constraints due to the environment in which the air-

craft operates.

The last two envelopes pose external constraints on the flight envelope, constraints

which are generally well-known and can be quantified easily. Examples of such

external constraints are the terrain and no-fly zones around the aircraft, and the

maximum load-factor the airframe can sustain before breaking. The example given
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in the introduction is considered to be a violation of the dynamic flight envelope.

The focus in this paper is on the first type, i.e. the flight envelope directly related

to the aircraft’s dynamic behavior. A more formal definition of the dynamic flight

envelope is given below.

Definition 2 (Dynamic Flight Envelope). The region of the aircraft’s state space in

which the aircraft can be safely controlled and no loss-of-control events can occur.

Constraints posed on the aircraft by the dynamic flight envelope are for example

a maximum roll-rate at high angle of attack in order to prevent the aircraft from

entering a potentially hazardous inertia coupling phenomenon or spin.

2.3 Reachable Sets

Reachable set analysis is an extremely useful tool in safety verification of systems.

The reachable set describes the set that can be reached from a given initial set within

a certain amount of time, or the set of states that can reach a given target set with a

certain time. The dynamics of the system can be evolved backwards and forwards in

time resulting in the backwards and forwards reachable sets respectively. The differ-

ence between these two sets is illustrated in figure 1. For a forwards reachable set,

the initial conditions are specified and the set of all states that can be reached along

trajectories that start in the initial set are determined. For the backwards reachable

sets, a set of target states is defined, and a set of states from which trajectories start

that can reach that target set are determined.

Assume that the dynamics of the system are given by

ẋ = f (x,u,d) (1)

where x ∈ R
n is the state of the system, u ∈ U ⊂ R

m is the control input, and

d ∈ D ⊂ R
q a disturbance input. Then, the formal definition of the backwards and

forwards reachable sets is given by definitions 3 and 4 respectively.

Definition 3 (Backwards Reachable Set). The backwards reachable set S (τ) at

time τ(0 ≤ τ ≤ t f ), of the system (1) starting from the target set T0, is the set of

all states x(τ), such that there exists a control input u(t) ∈ U (τ ≤ t ≤ t f ), for all

disturbance inputs d(t) ∈ D(τ ≤ t ≤ t f ), for which some x(t f ) ∈ T0 are reachable

from x(τ) along a trajectory satisfying (1).

Definition 4 (Forwards Reachable Set). The forwards reachable set V (τ) at time

τ(0 < τ ≤ t f ) of the system (1) starting from the initial set S0, is the set of all states

x(τ), such that there exists a control input u(t) ∈ U (τ ≤ t ≤ t f ), for all disturbance

inputs d(t)∈D(τ ≤ t ≤ t f ), for which x(τ) is reachable from some x(0)∈S0 along

a trajectory satisfying (1).
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backwards
reachable

set

target
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(a) Backwards Reachable Set
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initial
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(b) Forwards Reachable Set

Fig. 1 Backwards and forwards reachable set definitions.

2.4 Safe Maneuver Envelope through Reachable Set Analysis

Now, the safe envelope for a given system with a preliminary set of safe states can

be found by the intersection of the forwards and backwards reachable set of this

safe set. States that are part of both these sets can be reached from the safe set,

and can reach the safe set within a certain time. Therefore, if the initial/target set is

known to be safe, then all states that are part of both the forwards and backwards

reachable sets can be considered safe as well. This is illustrated by figure 2. For

example, an aircraft can enter a spin starting from a certain initial condition, and the

spin trajectory would then be included in the forwards reachable set. If recovery to

a safe flight condition from the spin is possible, the spin trajectory, or part of it, is

also included in the backwards reachable set. A similar example is deep stall of the

aircraft.

backwards
reachable set forwards

reachable set

safe
operating set

a-priori

safe set

Fig. 2 The safe envelope for a known safe set is defined by the intersection of the forwards

and backwards reachable sets.
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3 Semi-lagrangian Reachable Set Analysis

Sets can be represented either explicitly by enumerating all parts belonging to the

set, or implicitly as the level set of some function. This function can be evolved in

time such that the reachable set can be tracked through time by tracking the level

set of the function in time. In this section different solution methods to track the

interface evolution methods over time are discussed.

3.1 Time Evolution

Explicit and implicit surface descriptions only give a representation of a set. To

obtain the reachable set the interface has to be evolved in time. Suppose that the

velocity of each point on the interface is given by an external velocity field f (x,t).
The simplest method to move the interface with the velocity field is by solving the

ordinary differential equation
dx

dt
= f (x,t) (2)

for every point x on the interface, a Lagrangian formulation of the interface evo-

lution equation. To avoid the problems with instabilities, and deformation of the

interface elements, an implicit function ϕ is used both to represent the interface and

to evolve it. A simple convection partial differential equation

ϕt + ∇ϕ · f (x,t) = 0, (3)

where the subscript t denotes a temporal partial derivative in the time variable t, and

∇ is the gradient operator. This is an Eulerian formulation of the interface evolu-

tion, since the interface is captured by the implicit function ϕ as opposed to being

tracked by interface elements as was done in the Lagrangian formulation [11, 12].

This equation can be solved using an upwind schemes combined with forward Euler

integration. Stability of this approximation has to be enforced using the Courant-

Friedrichs-Lewy (CFL) condition[13], stating that numerical waves should propa-

gate at least as fast as the physical waves. This leads to the CFL time-step restriction

of

∆ t
n

∑
i=1

| fi(x,t)|

∆xi

< α (4)

where 0 ≤ α ≤ 1 is a safety factor usually taken to be 0.9. This condition clearly

poses a stringent constraint on the allowed time-step for high resolution grids in

combination with fast dynamical systems.

The time restriction posed by the CFL condition can be eliminated by allowing

unbounded stencils [14]. The time-step can be decoupled from the CFL-condition

by using an explicit, unconditionally stable time-stepping scheme. These schemes

can be interpreted as semi-Lagrangian schemes. The CFL condition is satisfied for

large time-steps by shifting the stencil. The first order hyperbolic partial differential

equation (3) propagates the values ϕ along the characteristic curves s(t) defined by
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ṡ = f (s,t). (5)

Thus, the value of ϕ at any time t can be determined by finding the characteristic

curve passing through (x, t) and tracing it backwards in time to a point (x0,t0) where

the value of ϕ is known, then ϕ(x,t) = ϕ(x0,t0). This observation is the basis of the

backwards characteristic, or the Courant-Isaacson-Rees (CIR) scheme [15], the sim-

plest semi-Lagrangian scheme. Given ϕ at time tk, the CIR-scheme approximates

the ϕ(x,tk+1) at any point x at time tk+1 = tk +∆ t by evaluating the velocity f (x, tk)
and approximating the backwards characteristic through x by a straight line

x−∆ t f (x,tk) ≈ s(tk). (6)

Then, ϕ(x, tk+1) is set equal to the interpolated value at the location s(tk). For linear

PDEs, the Lax-Richtmyer equivalence theorem guarantees that CIR converges to

the exact solution when ∆ t,∆x → 0 if the discretization is stable and consistent[14].

Semi-Lagrangian schemes combine the regular mesh of an Eulerian scheme with

the unconditional stability of a Lagrangian scheme. The difference between the Eu-

lerian, Lagrangian and semi-Lagrangian schemes is shown in figure 3.

tn−1

tn

Euler Lagrangian Semi-Lagrangian

f (x,a,b) s(tn)

Fig. 3 Euler, Lagrangian, and semi-Lagrangian schemes for the Level Set equation.

3.2 Hamilton-Jacobi Partial Differential Equation

For systems with control and disturbance inputs the level set equation (3) needs

to be reformulated as an Hamilton-Jacobi partial differential equation. One input,

marked as input b, will try to keep the system away from the target or to initial set,

the other, input a, will try to drive it towards the target or away from initial set.

The reachable set can then be obtained as the viscosity solution of a time dependent

Hamilton-Jacobi-Isaacs equation [16, 17].

The dynamic programming approach yields the backwards reachable set as the

viscosity solution of the terminal value problem, with subscript b indicating back-

wards,
∂V

∂ t
+ min

[

0,Hb(x,
∂V

∂x
)

]

= 0, V (x,0) = T (x) (7)
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where the Hamiltonian is defined as

Hb(x,
∂V

∂x
) = min

u
max

d

(

∂V

∂x

)T

f (x,u,d). (8)

Similarly, the forwards reachable set can be found as the viscosity solution of the

initial value problem, with subscript f indicating forwards,

∂V

∂ t
+ max

[

0,H f (x,
∂V

∂x
)

]

= 0, V (x,0) = S(x) (9)

where

H f (x,
∂V

∂x
) = max

u
min

d

(

∂V

∂x

)T

f (x,u,d). (10)

T (x) and S(x) are functions for which the level 0 describes the target and initial sets

T and S respectively. The comparison with 0 in (7) and (9) is added such that the

reachable set is only allowed to grow over time [16].

4 F-16 Longitudinal Maneuver Envelope

In this section the longitudinal maneuver envelope for a high-fidelity nonlinear

model of an F-16 aircraft is determined at two different flight conditions.

4.1 F-16 Model

When the full maneuvering capabilities of an aircraft are considered the reachable

set calculations have to be run in 8 dimensional space, if the altitude is considered

to be fixed. Three states related to the airspeed, three rotational rates, and two states

defining the relevant attitude. In this example only the longitudinal dynamics are

considered to reduce the computational load, and simplify representation of the ma-

neuver set. Therefore, only four states are considered: the airspeed VT , the angle

of attack α , the pitch rate qB, and the pitch attitude defined through a quaternion

component q2. The engine thrust and stabilizer deflections are considered as control

inputs. In this particular case, no disturbance inputs were considered. However, it

is possible to include uncertainty on the aerodynamic parameters, aircraft param-

eters, and wind as disturbance inputs and obtain the worst-case safe maneuvering

envelope.

The dynamics for the F-16 model are given by

V̇T = 1
m

(−D(α,qB,δh)+ T cosα + mg1)

α̇ = qB + 1
mVT

(−L(α,qB,δh)−T sinα + mg3)

q̇B = 1
Iyy

M̄(α,qB,δh)

q̇2 = 1
2 qBq0



Maneuver Envelope Determination through Reachability Analysis 99

where

q0 =
√

1−q2
2,

g1 =
[

−2q0q2 cosα +(q2
0 −q2

2)sinα
]

g,
g3 =

[

2q0q2 sinα +(q2
0 −q2

2)cosα
]

g,

with q0 a quaternion component, and g the gravitational acceleration. The horizontal

stabilizer deflection δh is constrained to ±25 degrees, and the engine thrust T is lim-

ited between 0 and 75000 Newton. The lift, drag and pitching moment are computed

through lookup-tables obtained from [18]. In order to calculate the optimal control

inputs to evolve the level set, a linear approximation in the stabilizer deflection of

the drag, lift and pitching moment coefficients was made as, for example

CmT
(α,δh) ≈Cm0

(α)+Cmδh
(α)δh (11)

The true coefficients were used to propagate the implicit function over time. An-

other option is to pose additional constraints on the elevator deflection such that

at its maximally allowed deflection the minimal/maximal aerodynamic effects are

generated. The leading-edge flap is not deflected in any of the simulations.

4.2 Scenarios and Trim Set Determination

Before the reachable set calculations can be performed, first the safe set has to be

defined. In this case the aircraft was trimmed for straight and level flight at 0m and

10000m altitude for a center of gravity location of 0.30% of the mean aerodynamic

chord. The result is a trim curve relating the airspeed and the angle of attack for

each of the flight conditions and configurations described above. Figure 4(a) shows

the trim curves for each of the considered scenarios.
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Fig. 4 Trim curve of the F-16 aircraft model at low and high altitude (a). Extended trim curve

(b).
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The trim curves have to be translated into implicit surfaces before the reachable

set calculation can be performed. This can be done by calculating the weighted dis-

tance to the nearest trim point for each point in the domain of interest. Implicit

surface methods require that at least one grid node is within the initial or target set

such that the location of the interface can be found. Therefore, the converted trim

curve is not sufficient to initialize the level set calculations. Hence, a region within

a certain weighted distance of the trim curve is considered to be safe, where the

weighted distance defining the band should be larger than the smallest allowed grid

cell. A different option would be to propagate a narrow band on a high resolution

grid over a small timestep, and then start the calculations with the resulting reach-

able sets as initial set on a coarser grid. Another option would be to extend the trim

set to include non-stationary, non-level flight conditions and create an implicit set

description from that set. This would however require a very large number of trim

points.

In order to limit the computational load and clearly show that the forwards and

reachable set yield different reached portions of the state space, the evolution time

is set to 1 second. This time was reached by evolving the initial/target set forwards

or backwards in time respectively, by 100 steps of 0.01 seconds. The computation

time for the F-16 application was between 1 and 4 hours on a single core of an Intel

Xeon X5500 processor running at 2.13 Ghz and equipped with 12 GB of RAM.

4.3 Airspeed Comparison

First of all a comparison is made between the maneuverability of the F-16 aircraft

at low altitude for different airspeeds. Figures 5(a), and 5(b) show the reachable sets

and safe envelope at airspeed of 60 and 150 m/s respectively. Clearly, with increas-

ing dynamic pressure, the aircraft becomes more maneuverable as can be observed

from the increased size of the safe maneuver set. Furthermore, the expected rela-

tions between the angle of attack and the pitch attitude, the angle of attack and pitch

rate, and the pitch attitude and pitch rate can all be observed from the plots.

4.4 Altitude Comparison

There exists a large difference between the trim curves of the aircraft at low and

high altitude as can be observed from figure 4(a). The lookup tables of the used

F-16 model do not depend on Mach number. The only difference between the two

flight conditions is therefore the dynamic pressure caused by a difference in air

density. The resulting effect on the safe maneuver set can be observed by comparing

Fig. 5(b) and Fig. 6(b). The dynamic pressure at 10000m and 150 m/s is about 75%

of flying at 0m and 100 m/s. The same ratio can be observed from the comparison

of the maneuver sets shown in figure 6(a) and figure 6(b).
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Fig. 5 Safe maneuver envelopes for two flight conditions with different dynamic pressure.
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Fig. 6 Safe maneuver envelopes for two flight conditions with dynamic pressure of 6125

Nm−2 and 4643 Nm−2.

5 Conclusions and Recommendations

In this paper a definition of maneuvering and dynamic flight envelope was given

based on the dynamics of an aircraft. Furthermore, a method to determine this enve-

lope based on reachable sets was formulated and applied to a nonlinear high-fidelity

model of an F-16 aircraft. The safe maneuvering envelope results agree with what

is expected from flight dynamics knowledge. Especially for general aviation and

commercial aircraft, it would be interesting to investigate whether the full enve-

lope determination problem can be split into fast, and slow dynamics by means of
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time-scale separation arguments. This would simplify the dynamic envelope prob-

lem into five and three dimensional subproblems which are more computationally

tractable than the original problem.
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Modelica Landing Gear Modelling
and On-Ground Trajectory Tracking
with Sliding Mode Control

Fabrizio Re

Abstract. A control system for an aircraft taxiing on ground based on sliding mode

has been developed. The controller is capable to track the trajectory assigned in

terms of longitudinal velocity and yaw rate and to drive an aircraft equipped with

electric motors in the main gear as well as conventional brakes and nose gear steer-

ing. In addition, it can successfully handle saturation of the actuators. The algorithm

is shown to be robust against parameter uncertainties (e.g. aircraft mass) as well as

low friction coefficients at the interface tyre-ground. In order to test the tracking

controller, an accurate virtual aircraft model has been designed in Modelica, with

particular attention to the landing gears.

1 Introduction

In recent years, a great deal of attention in aircraft transportation research has fo-

cused on reduction of noise and pollution in airports. One specific research topic

involves the possibility of driving the aircraft by electric motors integrated in the

landing gears instead of the jet engines while taxiing and manoeuvring on the

ground. This configuration should be complemented by an on-ground control sys-

tem capable of driving the aircraft autonomously by tracking an assigned trajec-

tory. In fact, while automated flight controls are an established reality and advanced

functions keep being investigated and marketed, the aircraft on ground is still con-

trolled manually by the pilot to a large extent; automated ground controls, if at all

present, offer very limited features. Indeed, a robust ground speed and heading con-

trol system can offer interesting benefits, like for instance insensitivity to wind gusts

while taxiing. In a broader perspective, automated trajectory planning and tracking

through an on-ground autopilot function could free the pilot from driving and let him

Fabrizio Re

DLR German Aerospace Center, Institute of Robotics and Mechatronics, Oberpfaffenhofen,

Germany
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concentrate on pre-flight or post-flight activity (tower communication, preliminary

controls, etc.); even more importantly, such a system could become part of a fully

automated airport ground control, which might improve airport capacity and safety.

Research on the topic of aircraft-on-ground dynamics and control has not been

extensive so far. Rankin et al. [13, 14, 15] have studied the lateral dynamics of a

mid-size commercial aircraft comprehensively; they carried out bifurcation analy-

ses to investigate the aircraft cornering behaviour in relation to longitudinal speed,

steering angle at the nose wheel, steering rate, tyre-ground friction and position of

the centre of gravity. Roos et al. [16, 17, 18] and Biannic et al. [1] propose control

algorithms based on nonlinear or linear parameter-variable (LPV) aircraft models

and anti-wind-up compensators. Duprez et al. [3] showed that nonlinear inversion

and linear control techniques are not sufficient for yaw control at very low speeds

because the system is highly nonlinear due to high sideslips and secondary tyre

effects; moreover, errors become important if compared to measured or estimated

quantities (e.g. lateral velocity), causing a need for robust control.

On the other side, the problem faced in this paper is not really different from a

vehicle dynamics problem, hence it is appropriate to review the literature on this

field. Research on autonomous road vehicles is way more advanced, reaching as far

as to predictive control applications [4] and optimal control of overactuated systems

through control allocation [2]. Solea and Nunes [21] propose a trajectory planning

and tracking system for an autonomous vehicle based on sliding mode control.

This paper shows an approach to designing an automatic aircraft-on-ground tra-

jectory tracking control based on sliding mode. The attention will focus on the inner

loop controller receiving kinematic inputs (e.g. velocities and/or accelerations) and

commanding the actuators accordingly. Such a system can be operated by the pilot

himself or can be coupled with an outer-loop trajectory planning controller that re-

ceives trajectory data and calculates the required kinematics. First of all, a model of

the real aircraft has been realised as a virtual test-rig for the control validation. The

landing gear and particularly the tyres have been modelled precisely to enhance the

realism of this virtual aircraft. The development of this model with the Modelica

commercial compiler Dymola will be described in section 2. Section 3 illustrates

the control system architecture and design. Some simulation results showing the be-

haviour of the controlled aircraft will be presented in section 4. Finally, conclusions

and the outlook of this work will be discussed in section 5.

2 Virtual Aircraft

Since 1995, the DLR Institute of Robotics and Mechatronics has constantly been

developing a Modelica Flight Dynamics Library (FDL) [9] that allows aircraft mod-

elling in a realistic world environment at different levels of detail. The FDL makes

use of the open modelling language Modelica [6] and has already been used in a

number of internal and international research projects (e.g. [10], [8], [19], [5]).

In the first versions of the FDL, the landing gear was modelled in a rather simple

way, by means of an interaction of basic forces between aircraft and ground. This
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part has been improved in the present work by modelling a proper landing gear with

rolling wheels.

A wheel model has been used together with elements of the Modelica Multibody

Library to build a model of a whole landing gear. Three variants have been realised:

• steerable two-wheel bogie without brakes, for use as nose gear;

• fixed (non-steerable) two-wheel bogie with brakes, for use as main gear on small

and medium aircraft;

• fixed four-wheel bogie with brakes, for use as main gear on large aircraft.

The vertical top end of the gear structure is connected to the airframe model through

Modelica Multibody interfaces, which represent physical connections between tridi-

mensional objects with exchange of forces and torques. A suspension and a damper

are also modelled between the gear structure and the body interface, with a simpli-

fied stopper to limit the suspension travel within the allowed range. All dimensional

parameters can be adjusted to model landing gears of different sizes. A Bearing

Friction block from the standard Modelica Rotational Library [6] is connected to

each wheel to model the frictional effects in the axle supports. In addition, there is

a connector to the avionic bus for data exchange with the avionic layer.

The steerable gear features a rotational joint and an Impressed Position element

to rotate the whole bogie around the vertical axis. The steering command given by

the pilot is processed through a first-order lowpass filter to reproduce the delays of

real steering systems. This part may be replaced with a model of a real steering

actuator for a more accurate dynamic simulation. In the brakeable gears instead,

brake elements from the standard Modelica Rotational Library are provided for each

wheel. In addition, a simple ABS model was developed, appropriately limiting the

braking force when the longitudinal slip exceeds 15% to avoid wheel blocking.

For the work described in this paper, the midsize aircraft configuration with two-

wheel main gears has been used.

A Modelica tyre model package [23] already available at DLR was adapted to

this work. This package features a semi-physical tyre model based on parametrized

friction coefficients and their dependency on the slip velocities. The longitudinal

and lateral forces are a function of the tyre slips in both longitudinal and lateral

direction as well as the camber angle and the normal force at the contact patch.

Those functions can be varied through several external parameters, such as e.g. fric-

tion coefficients in different predefined conditions (e.g. at zero longitudinal slip, at

large longitudinal slip, etc.). The tyre model has been tuned by means of compre-

hensive experimental data on aircraft tyres provided by a tyre manufacturer. For this

purpose, a test rig was modelled in Modelica to replicate those experiments, e.g.

rolling wheel with given speed and slip angle imposed. The tyre model parameters

were varied to match the simulation results with the experimental data available as

closely as possible.

The parameters used in the wheel model include masses, inertias, dimensions

as well as tyre model parameters and are arranged in data sheets. The gear model

included in the FDL already contains some real data sets available by default, like

nose and main gear wheels of a mid-range and long-range aircraft respectively. The
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user can easily change the parameters to those of any other aircraft by compiling a

blank data sheet available as template in the library.

The terrain model of the FDL was enhanced with a basic ground model. It is

possible to define a distance from the EGM96 geoid surface and a normal vector to

define the ground slope. In the basic version, these quantities are constant parame-

ters which are set at the beginning of the simulation, resulting in a simple, smooth

ground with constant slope.

As regards the ground driving system, a simple model of an electric motor with

an ideal characteristic was designed. The motor produces a constant torque below

a certain rotational speed, and works at constant power above that speed. The input

is a real number in the range [ 0;1] which proportionally controls the amount of

torque produced, being 0 = no torque and 1 = maximum torque available at the

current speed. One motor model has been connected to each of the main gear wheels;

thus the whole aircraft model features four motor models which are independent of

each other. A driving/braking controller is provided for each gear. It receives the

commanded driving/braking moments from the on-ground control system described

further on and regulates the electric moments and the brakes of the two gear wheels.

The driving/braking effort is equally divided between the two wheels of each gear.

The steering system has been modelled in a simple way as an integrator of the

rate of steering angle commanded by the on-ground controller, as the standard input

of a real steering system is assumed to be the steering rate (commanding the position

of the servovalve, which in turn regulates the hydraulic flow rate, hence the steering

rate). This model also features a first-order delay to account for the delayed response

of the real system.

3 On-Ground Controller

The control system shall be capable to handle critical on-ground situations, since

it will be used as global control system for the complete ground mission (landing,

turn-off, taxiing, U-turning, turn-on, take-off). While it can be argued that a sim-

ple linear model should suffice for standard taxiing, situations occur in which linear

approximations no longer hold. This is the case at low speeds or large steering an-

gles [3]; also, it can be expected in runway high-speed manoeuvres (e.g. turn-on,

turn-off) in poor weather conditions. In addition, the behaviour of the aircraft on

the ground is influenced by external factors (e.g. aerodynamics) and a number of

parameters that are variable even during the same mission (e.g. tyre behaviour, taxi-

way surface, variable aircraft mass), therefore the control system must be robust

against both unmodelled dynamics and parameter uncertainties.

For these reasons, and also in order to keep the computational effort at a low level,

a control architecture has been chosen based on a feedforward nonlinear controller

and a feedback sliding mode control. This kind of control is known for offering

high robustness in spite of a quite simple mathematical structure ([20], [12]). The

control architecture is shown in Fig. 1. It features a feedforward controller based

on a nonlinear aircraft model, a feedback sliding mode control that adds robustness
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Fig. 1 On-Ground Control Architecture

against uncertainties, and an anti-windup limiter that handles actuator or tyre satu-

ration. The system inputs are the requested longitudinal velocity vx,des and yaw rate

ψ̇des. The outputs of the controller are the two driving/braking moments Ml, Mr for

left and right wheel, and the steering angle rate δ̇ at the front gear. The actual steer-

ing angle δ and the velocity vector vCG referred to the centre of gravity (CoG) and

containing vx, vy, ψ̇ are then fed back from the virtual aircraft to the controller.

3.1 Feedforward Controller

The feedforward controller is based on an inverse nonlinear aircraft model. Vertical

dynamics and aerodynamics are neglected here; their effect will be compensated

by the feedback control. Since the wheels of each gear are relatively near to each

other, it is reasonable to assume that their behaviour will be approximately the same.

Hence only one wheel is modelled in each landing gear. The whole model will then

have three wheels, one in the front and two in the rear. The dynamic equations of

the aircraft on ground are:

m(v̇x − vyψ̇) = Fx,CG = Fx f cosδ − Fy f sinδ + Fxl + Fxr

m(v̇y + vxψ̇) = Fy,CG = Fx f sinδ + Fy f cosδ + Fyl + Fyr

Jzψ̈ = Mz,CG = b f

(

Fx f sinδ + Fy f cosδ
)

+
− br

(

Fyl + Fyr

)

+ a(Fxr − Fxl)

(1)

where vx,vy, ψ̇ are the longitudinal and lateral velocity referred to the CoG and the

yaw rate in an aircraft-fixed reference system; Fx,CG, Fy,CG, Mz,CG are the aircraft

longitudinal resp. lateral force on the CoG and the yaw moment; Fx f , Fy f are the

longitudinal resp. lateral force on the front gear wheel; the same applies for the left

main wheel (with index l) and right main wheel (with index r). The mass m and the

moment of inertia Jz around the vertical axis are assumed known. b f and br are the

longitudinal distances of the nose gear resp. main gears to the CoG; a is the lateral

distance of each main gear to the CoG. In addition to eq. (1), a tyre model with
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Fig. 2 Coefficient ηMz
as function of vx and δ

relationships between tyre forces and kinematics is needed to close the equation

system. A simplified version of Pacejka’s Magic Formula [11] has been used here.

The aircraft longitudinal speed vx and yaw rate ψ̇ are the inputs of the feedfor-

ward controller and coincide with vx,des and ψ̇des. Recall that, in a road vehicle with

only one steering axle, the absolute velocity and the yaw rate are coupled [7], so

vy is already determined here. As they are imposed externally, it follows that their

derivatives in eq. (1) are known. The outputs of the feedforward controller are the

two driving (braking) moments Ml , Mr and the variation of front steering angle δ̇ .

Since the system is overactuated, additional equations are needed. The required

yaw moment Mz,CG, resulting directly from ψ̈ , can be generated through both the

steering system and differential driving moments on the gear wheels, so a strategy

must be defined to split it among the actuators. It is firstly noted that increasing the

steering angle δ has a little effect on the yaw moment at low longitudinal speeds. As

the longitudinal speed decreases, the yaw moment is more efficiently generated by

differential driving moments between left and right wheel. Secondly, the greater the

steering angle δ already is, the less effective an additional increase of δ is in gener-

ating yaw moment. This is obvious from the yaw equation of the on-ground vehicle

(1), where the term Fy f cosδ decreases for increasing δ while Fy f will eventually

remain constant or even decrease because tyre saturation has occurred. Finally, the

achievable steering angle is limited, therefore an increase of δ in the feedforward

controller should be prevented once the maximum steering angle has been reached,

as only differential moments can produce additional yaw moment in this condition.

Based on these considerations, an appropriate continuous function ηMz = f (vx,δ )
is defined, with 0 < ηMz ≤ 1. It expresses which part of the needed yaw moment

will be generated by differential moments; the part generated by the steering system

is then 1−ηMz . As shown in Fig. 2, ηMz is 1 for vx = 0 and decreases monotonically

to 0.1 for vx → ∞ when |δ | is smaller than 45◦. For |δ | > 45◦, ηMz increases; it

becomes 1 regardless of vx for the assumed maximum steering angle of 65◦.

Starting from ηMz ·Mz,CG and considering the wheel radius and the distances of

the main gears to the CoG, the differential motor moment Mdi f f that generates the
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yaw moment is calculated. The requested longitudinal force is completely generated

by the wheel driving moments; the total sum of the driving moments 2 ·Mlong is

calculated by dividing the longitudinal force by the wheel radius. Finally, the motor

moment on each wheel is:
Ml = Mlong + Mdi f f

Mr = Mlong −Mdi f f
(2)

The feedforward controller is implemented as a Modelica object. The Modelica parser

automatically solves the system for the unknowns δ , Ml, Mr without need to rear-

range the equations manually; δ̇ is then directly available by differentiating δ .

3.2 Sliding Mode Feedback Controller

Let ṽx(t) = vx − vx,des and ˙̃ψ(t) = ψ̇ − ψ̇des be the tracking errors of the state vari-

ables to be controlled. We define two surfaces for both variables (see also [20]):

svx = ˙̃vx + λvx ṽx = 0

sψ̇ = ¨̃ψ + λψ̇
˙̃ψ = 0

(3)

Assuming the initial conditions ṽx(0), ˙̃ψ(0)= 0 and ˙̃vx(0), ¨̃ψ(0)= 0, it is straightfor-

ward to show that ṽx(t), ˙̃ψ(t) = 0 is the unique solution of eq. (3). The tracking prob-

lem is then equivalent to that of finding a control law such that svx ,sψ̇ = 0 ∀ t > 0.

The situation where svx ,sψ̇ = 0 is called the sliding condition. However, the real

plant could differ from the internal model due to modelling errors (e.g. aerody-

namic effects) and parametric uncertainties (e.g. different mass). Hence the control

law must first provide that s → 0, that is, that all trajectories must point towards the

sliding surface s; once s = 0 is reached, that ṡ = 0. The former requirement can be

formalized as follows [20]:
1

2

d

dt
s2 ≤−k |s| (4)

with the strictly positive constant k. A control law of the form u = −k sgn(s) guar-

antees that the sliding condition is reached in a finite time t ≤ s(t = 0)/k; this can

be proved by integrating eq. 4 in time. Once the sliding surface has been reached

(s = 0), the dynamics is given by eq. 3, that is, the tracking errors will tend to

zero exponentially with the time constants λ−1
vx

,λ−1
ψ̇ . However, such a control law

would result in practice in high-frequency chattering around the the sliding condi-

tion. Therefore, the sign function is replaced with the following saturation function:

sat(s/Φ) =

{

s/Φ i f |s/Φ| ≤ 1

sgn(s/Φ) otherwise

where Φ is a strictly positive constant. The control law guarantees now that the

boundary layer B(t) = {x: |s(x,t)| ≤ Φ} is reached in a finite time smaller than

s(t = 0)/k, still allowing good tracking within a predefined tolerance for suffi-

ciently small Φ; more precisely, |x̃| ≤ 2Φ ∀t ≥ 0 holds for any trajectory starting

inside B(t), where x̃ is the tracking error of the controlled state variable.
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In the present problem, two constants Φvx and Φψ̇ must be defined for the two

variables tracked. For this application, they have both been set as 0.1. While such

a precision requirement is reasonable on the longitudinal velocity error where the

absolute values are in an order of magnitude of 1–10, it might arguably be too large

for the yaw rate. However, the simulation results show that very good tracking can

nonetheless be achieved; in fact, a smaller Φψ̇ would affect the computational time

seriously without adding any noticeable benefit. Both λvx ,λψ̇ have been set as 3.

This means a time constant of 0.33 s for both tracked variables, which is deemed

appropriate considering the system characteristics.

The control laws of the feedback part are then:

Mlong = −kM sat (svx)
Mdi f f = −ηMz kM sat

(

sψ̇

)

δ̇ = −
(

1−ηMz

)

kδ̇ sat
(

sψ̇

)

(5)

where ηMz is the coefficient in Fig. 2. kM,kδ̇ are the gains of the control laws. As ex-

plained previously, they determine the time in which the sliding condition is reached.

It should be noted that the saturation functions cannot be greater than 1 in modulus,

so it is not significant to set gains much greater than the actuator saturation values;

on the other hand, the feedback control must be able to correct a possibly inade-

quate feedforward control, which might be at saturation in the opposite direction in

the worst case. For this reason, the first two control laws, which command a motor

moment, have the same kM = 7000 which is twice the maximum motor moment

assumed of 3500 Nm; the third control law, responsible for the front steering, has

kδ̇ = 3 being 1.5 rad/s the assumed maximum turning rate of the steering system.

The left and right driving moments resulting from the first two control laws are

determined according to eq. (2).

3.3 Anti Wind-Up Limiter

With the control configuration described so far, the derivatives of the control inputs

vx and ψ̇ should be limited through an appropriate rate limiter for two reasons. On

one hand, the control system is still not able to deal with the saturation of the actua-

tors. Modelica can only solve the feedforward controller equations as a closed equa-

tion system; actuator saturation cannot be implemented there because the equation

system would have no exact solution for certain inputs. In the configuration without

rate limiting, inputs that would be impossible in reality because of actuator satura-

tion are still valid inputs of the feedforward controller and cause its states to diverge

significantly from the real aircraft ones. This, together with the logic of the sliding

mode control commanding large controls to compensate that difference, causes an

effect analogue to wind-up in integrators ([22], [20]). This is problematic when the

control input is not monotone, because a sign change in the control input rate has to

bring the model states back to the real states first and has therefore only a delayed

effect on the real system. On the other hand, it is important to ensure that the con-

trolled system always remains in a stable region. This means in particular that the
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tyre slip must never be greater than the slip corresponding to the maximum force in

both longitudinal and lateral direction. A solution is to limit the rate, i.e. the deriva-

tive, of the control inputs if the inputs themselves diverge from the system states

beyond a certain threshold. In this way, the model states can match the real ones as

closely as possible and no unrealistic inputs can be passed to the control system.

The threshold variable for the longitudinal direction is chosen to be the differ-

ence between real and model longitudinal speed vx. This is immediately available as

measurement (ground speed) in the real system. For the lateral direction, we define:

qlat = sgn (δ ) σy, f +

{

0 i f |δ | < δ0

2.5(δ − δ0 sgn δ ) otherwise

where δ is the actual steering angle and σy, f is the lateral slip at the front tire

calculated as the ratio of tyre lateral velocity to tyre absolute velocity: σy, f =

vy, f /
√

v2
x, f + v2

y, f . These velocities are available through either measurements or es-

timates. It should be noted that this anti wind-up limiter only needs to look at the

slip conditions at the front tyre to ensure permanence in the stable region. If the rear

tyres should lose grip, the real yaw rate would become quickly greater than the one

in the controller model, and the sliding mode feedback controller would immedi-

ately contrast this by countersteering and commanding a moment difference in the

opposite direction, much like an ESP system in a road vehicle.

The anti wind-up limiter regulates the derivative of the outputs (which will be

the commanded states of the feedforward controller) as a function of the inputs,

their derivatives and their respective threshold variable. If the threshold variable

exceeds the allowed value, the output rate is decreased and follows the rate of the

real system, which is supposed to be the maximum feasible rate since the model and

the real system were diverging. If the threshold variable is below the allowed value,

the output rate is equal to the input rate to guarantee tracking precision; if there is a

difference between feedforward controller states and real system states due to prior

rate limitation, the rate limiter no longer intervenes, and if necessary, the output rate

is additionally increased resp. decreased to reduce the state difference to zero.

This anti wind-up arrangement results in limiting the aircraft longitudinal force

resp. the yawing moment whenever the real system cannot physically achieve them.

However, if the pilot or the outer-loop controller commands a different velocity or

yaw rate whose derivatives are smaller in modulus or change sign, the anti wind-up

limiter no longer intervenes. In this sense, this limiter does not bring additional risk

of pilot induced oscillations, nor does it limit or delay the pilot inputs in any way if

no saturation has occurred.

4 Simulation Results

A virtual aircraft model of a mid-size aircraft has been built in Dymola 7.1 us-

ing the FDL (section 2) and electrical motors have been added to each of the four

rear wheels. The tracking controller composed of a nonlinear feedforward controller
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Table 1 Different features of the simulations carried out

Simulation Features

#1 Mass = 56900 kg, friction coeff. = 0.8 ∗ nominal

#2 Mass = 66900 kg, friction coeff. = 1 ∗ nominal

#3 Mass = 76900 kg, friction coeff. = 0.6 ∗ nominal

and a sliding mode feedback controller has been connected appropriately and three

different simulations have been carried out. To test the controller robustness, the

aircraft mass and the tyre-ground friction coefficients stored in the virtual aircraft

model were different in each simulation, while the aircraft model in the feedfor-

ward controller remained unchanged (see table 1). The inputs are predefined time-

dependent profiles of longitudinal velocity and yaw rate. The simulations were run

in Dymola using the DASSL algorithm with variable time step.

It can be seen from the longitudinal velocity diagram (Fig. 3) that the controller

accelerates the aircraft as much as possible to reach the requested vx; the acceleration

differences are due to the different mass in each case. The braking phases track the

requested deceleration precisely in all cases since the brakes are never saturated.

The yaw rate is tracked with very good precision in all simulations. The curves in

the diagram (Fig. 4) mostly overlap with the requested yaw rate. During the last cor-

ner, the simulation with the highest mass and the smallest friction coefficients shows

a clear delay in reaching the requested yaw rate because the front wheels are satu-

rated and yaw rate limiting occurs to keep the aircraft in the condition of maximum

lateral force. This indeed assures a stable operation; on the other side, it affects the

precision of the trajectory tracking because the cornering radius is reached later than

requested. This circumstance shall be handled at the outer control loop level which

assigns the requested inputs, that is the pilot or the autopilot system; they must

Fig. 3 Longitudinal Velocity - solid line = input velocity; dotted line = simulation #1; dashed-

dotted line = simulation #2; dashed line = simulation #3
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Fig. 4 Yaw Rate - solid line = input velocity; dotted line = simulation #1; dashed-dotted line

= simulation #2; dashed line = simulation #3

recognize (by feedback from the rate limiters) that the physical limits of the system

have been reached and recalculate new inputs to be able to follow the trajectory.

5 Conclusions

An aircraft on-ground control system based on sliding mode has been designed in

Modelica. The controller allows precise tracking of assigned longitudinal velocity

and yaw rate by controlling the steering angle, the braking system and electric mo-

tors connected to the main gear wheels; at the same time, it takes actuator saturation

and physical limits of the system into account. It has been shown through simula-

tion results that the controller is robust against different aircraft mass and varying

tyre-ground friction coefficients.

During this work, new Modelica landing gear and tyre-ground interaction models

have been developed as an extension to the DLR Flight Dynamics Library. The

new parts allow detailed simulation of an aircraft moving on ground with particular

regard to the dynamic aspect. The new models can be used as sub-components in

larger Modelica models, thus allowing global, multi-disciplinary aircraft simulation.

For instance, the landing shock and its influence on the aircraft structure can be

analysed in a flexible aircraft model; also, side forces acting on the landing gears

can be quantified, and their components can be dimensioned accordingly.
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Abstract. Obstacle avoidance of Micro Aerial Vehicle (MAV) in urban environ-

ment is the most complex, difficult and essential part of the autonomous flight 

problems. The paper presents a simple ad-hoc strategy using a pair of miniature 

laser rangefinders (i.e. MLR100) and two PIDs cooperating with an obstacle 

avoidance controller. The strategy can be realized as an additional routine inte-

grated with the autopilot’s firmware (i.e. MP2128
HELI

). The main advantage of the 

proposed strategy is simplicity of its implementation in small-sized MAVs and its 

power efficiency. All previous works, especially the vision-based ones require high 

performance microprocessors which is an important limitation when applying on 

real MAVs. On the other hand, the autonomous controller, which is based on optic 

flow sensors, is easy to implement on even tiny MAVs, but optic flow sensors 

require applicable level of contrast variation, so their performance is strongly sen-

sitive to weather conditions. The proposed idea of the autonomous obstacle 

avoidance system in urban environment was simulated using MATLAB – SIMU-

LINK software. In the real flight all computations and controls will be realized by 

the advanced autopilot, hence the rest of autonomous control and complex flight 

dynamics are not included in the simulation. The assumption allows to spot a more 

focused attention on the obstacle avoidance problem and a simpler model of the 

MAV can be used in the simulation. The results presenting the 2D trajectories 

confirm that the effectiveness and safety of the proposed strategy of obstacle 

avoidance is attainable during the real flight in streets’ canyons. 

Keywords: obstacle avoidance, autonomous flight, autopilot, streets’ canyons, 

miniature aerial vehicle laser rangefinder. 

1   Introduction  

The main purpose of research on autonomous MAVs is to achieve the best 

autonomy and flight performance in unknown environments as much as possible. 
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The urban environment is the most difficult and uncertain area where MAVs can 

perform flights. The assurance and rapid obstacle detection are highly expected 

because of the significant variability and variety of objects appearing around the 

flight path. Flying over an urban environment also requires the waypoint navigation 

in order to planning paths which fulfills the goals of the flight and it is essential to 

the diverse missions of MAVs. Therefore the robustness of the autonomous flight is 

depended on navigation algorithms and autonomous control laws.  

Many researchers work on improving the effectiveness of the autonomous sys-

tems used in MAVs. Most of them focused on the vision-based systems and digital 

image processing [1, 3, 5]. Vision-based systems allow observing a visible area 

around the MAVs and it makes possible to create a 3D or 2D map. The map can be 

further utilized by the path planners [12].But the obvious disadvantage lies in the 

complexity of the image processing routines, which require efficient DSPs with 

high power consumption. In turns it shortens the flight duration. Increasing the 

capacity of batteries also increases the weight of the whole system. Moreover, the 

image stabilization is an additional problem. Although a mechanical stabilizer can 

help, it means more electronics and more computations. Vision-based systems are 

the future of autonomous flight control systems, but today’s technology still fails to 

meet the specifications of the tiny MAVs. 

Some of the recent researches on the autonomous systems presented the control 

strategy based on optic flow sensors and it gives satisfying results. However [10, 

11, 12], most demonstrations required special patterns as landmarks in order to 

guarantee sufficient visual features to estimate safe flight path. If the variation of 

the contrast is too low the control strategy based on optic flow will be useless and 

collisions will be unavoidable. That’s why optic flow sensors performance is 

strongly sensitive to weather conditions and illumination. 

Designing of miniature fixed-wing or delta-wing aerial vehicles requires to be 

light-weighted and low-power consumption. Hence it requires a power efficiency of 

the on-board equipment realizing autonomous flight control. On the other hand, 

complex algorithms of the autonomous guidance and obstacle avoidance must 

involve high performance microprocessors, which are necessary in rapid computing 

for a safe and sound flight paths. Most of the developed algorithms are only offline 

experiments, computer simulations or online experiments carried out in selected 

environments without verifications in different flight scenarios or weather condi-

tions [1-11]. So the challenge is to design an effectively autonomous flight control 

system which will guarantee a reliable autonomous flight in various real world 

scenarios and it could be realized by available equipment [12].  

We propose an strategy of autonomous obstacle avoidance, while micro aerial 

vehicle flies in streets’ canyons, which can be realized on readily available 

equipment: two miniature laser rangefinders MRL100 (from Aerius Photonics) and 

advanced autopilot MP2128
heli

 (from MicroPilot). We couldn’t use laser scanner, 

because it is too heavy to place them in our airframe (wingspan: 1245 mm and total 

weight: 1200 gram). Some strategies of obstacle avoidance use a single laser 

rangefinder, but such configuration disables possibility of flight in streets’ canyons 
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[12]. So we decided to use configuration, which enables autonomous flight in can-

yons, but instead of optic flow sensors we choose laser rangefinders [12].All nec-

essary computations can be realized by the autopilot, so any additional electronics 

would not be needed. The manufacturer of the autopilot delivers a development tool 

called XTENDER, which allows modifying the autopilot firmware with additional 

user code. Although the strategy presented in this paper is validated only in simu-

lations, it proves that there is a great chance to introduce it into real MAV. And it 

will be the next step of our research. 

2   Obstacle Avoidance Strategy 

2.1   Hardware and Configuration 

Two miniature laser rangefinders (LRF) are the base of proposed autonomous 

obstacle avoidance strategy (Figure 1). They will measure ranges between MAV 

and objects lying on both sides of the vehicle track. Controlling these ranges by 

PIDs’ loops and obstacle avoidance controller will allow avoiding obstacles and 

continuing flight in street canyon [12]. The great advantages of miniature laser 

rangefinder are its features predisposing it as perfect sensor which can be used in 

miniature aerial vehicle. Features of the miniature laser rangefinder are presented in 

Table 1. 

Table 1 Features of miniature laser rangefinder MRL100 

Feature Value 

Weight  26 g 

Power rating <400mW 

Size 1,25”x1,5”x1,6”  

Pulse repetition  500Hz 

Resolution <0,2 m 

Range  ~0.1m  to >100m 

Divergence angle  10x10 mrad 

Output UART 

Filters averaging and 

median filters 

The most important features are small size and weight, power efficiency, high 

repetition rate and UART serial port which is indispensable for measured data 

transmission. Also detectable maximum range fits specific conditions of obstacle 

avoidance during flight in streets’ canyons.  
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Of course there are many other sensors which can be used in obstacle avoidance 

system, but their possibilities make them losing out with the laser rangefinder. 

Miniature low resolution cameras are smaller and lighter, but image processing 

routines running on energy efficient microprocessors, are still insufficient to reduce 

influence of contrast and obstacle illumination conditions. The extremely case, 

when always cameras fail, is a night flight. Also optic flow sensors are sensitive to 

contrast and weather conditions. For instance they are unable to detect range to 

obstacle properly while MAV is flying nearby uniform building wall with no ap-

plicable contrast differences. Such situation can happen in urban environment 

regularly. The last kind of sensor, which is frequently used in robotics, is an ultra-

sonic sonar. Its outdoor version has similar weight and dimensions as the laser 

rangefinder. The main advantage of ultrasonic sensors is a wide beam cone, so the 

scanned area is much bigger than the laser rangefinder measurement at single point. 

In the other hand scanning range is limited up to a few meters against more than 100 

meters achieved by the laser rangefinder. If MAV flies fast, a few meters scanning 

range would not be enough to ensure space for turn. Hence in our opinion the laser 

rangefinders are the best sensors for our purpose at the moment which fulfill re-

quirements of obstacle detection in urban environment.  

 

Fig. 1 Miniature laser rangefinder MRL100 from AERIUS. 

Configuration of miniature laser rangefinders is a significant aspect of the system 

reliability and usability. In our opinion the sensors configuration, which enables 

flight possibility in streets’ canyons, is as follows: both laser beams are placed 

tangent to the MAV plane and they are forward looking, but swept back from nose 

by specified angle. So two laser beams will create “V” shape (Figure 2). 

The configuration satisfies both aspects of autonomous flight in urban envi-

ronment: flight in streets’ canyons and obstacle avoidance, because laser range-

finders scan not only area at MAV front but also on both sides in directions of 

potential flight. Angle between laser beams can be evaluated from formula: 

][
33

arctan2 rad
R

R π
α =⎟⎠

⎞⎜⎝
⎛

⋅=

                                       

(1) 

where: R- minimum turn radius. 



Obstacle Avoidance Strategy for Micro Aerial Vehicle 121

 

 

MAV 
α 

2

R 

DYL 

DYR 

R 

 

Fig. 2 The “V” shape created by laser beams of miniature laser rangefinders: α - angle be-

tween laser beams, R – minimum turn radius. 

Thanks to the chosen configuration, the α angle is independent from flight pa-

rameters such as speed or minimum turn radius.  

Typical use of ultrasonic or laser rangefinders is scanning and sweeping the en-

vironment while the mobile robot is moving. Such strategy allows rendering the 

environment occupancy grid map and thus it is possible to generate the safe tra-

jectory. While occupancy grid map calculations are simple for 2D environments, 

things goes worse for 3D environments, which are typical for aerial vehicles. Di-

mensions and sizes of occupancy grid map are increasing since MAV 3D operating 

zone is much bigger than 2D zone typical for mobile robot. Even if the MAV flight 

zone could be scanned only in 2D, the laser sensor must be stabilized by special 

gimbals’ platform, so beam targeting also won’t be easy.  

That’s why laser rangefinders will be fixed to the MAV body. Thus measured 

ranges should be independent from MAV body frame orientation, what is essential 

for determining true range to obstacle. Hence we have to transform coordinates  

 

 

Fig. 3 MAV flight in street canyon, φ - roll angle, DYL – NED frame y coordinate of obstacle 

on the left, DYR – NED frame y coordinate of obstacle on the right. 
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Fig. 4 MP2128heli from MicroPilot 

Table 2 Main features of autopilot system MP2128heli 

Feature Value 

Weight with GPS 28 g 

Power rating 140 mA @ 6.5V 

Size 100x40x15 mm  

selectable inner loop update rates 30/60/180 Hz 

user definable PID feedback loops (for camera stabilization etc) 8 

user definable table lookup functions  8 

autonomous takeoff and landing supported by AGL yes 

change altitude at waypoint yes 

change airspeed at waypoint yes 

user definable holding patterns yes 

user definable error handlers (loss of GPS, low battery etc.) yes 

servo resolution 11bit 

servo update rate 50 - 200 Hz 

altimeter maximum altitude 12,000m 

3 axis accelerometers 2g 

maximum angular rate 150° per second 

attitude update rate 200 Hz 

12 state Kalman filter yes 

GPS update rate 4Hz 

supports DGPS accuracy yes 

waypoints 1000 

of obstacle location from MAV body frame to NED frame (North East Down) 

(Figure 3). Required values of actual roll and actual pitch angles are available from 

autopilot gyros. 

Reliability of proposed autonomous obstacle avoidance strategy strongly relies 

on predictable flight control, so the high quality autopilot system should be used. 

Creating individual autopilot for our purpose seems be pointless, because probably 
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it would take much time and final result couldn’t be as good as available commer-

cial autopilot from MicroPilot or Procerus. Table 2 presents main features of 

MP2128
heli

 (Figure 4), the most advanced autopilot system from MicroPilot, which 

will be suitable enough for our purpose. 

2.2   Diagram of Obstacle Avoidance Control System 

Usage of laser rangefinders in the autonomous obstacle avoidance strategy requires 

introducing adequate control algorithm. We propose the algorithm, which is based 

on two PIDs’ loops cooperating with obstacle avoidance controller. The routine of 

the algorithm will be integrated with the autopilot software responsible for standard 

control laws and waypoint navigation. Obstacle avoidance controller will decide 

about actual priority of each control task i.e. waypoint navigation and obstacle 

avoidance including flight in streets’ canyons. Obstacle avoidance controller will be 

able to override standard autopilot controls.  

The diagram of designed autonomous obstacle avoidance system is presented in 

Figure 5. 

 

Autopilot MP2128
heli

 Left laser  

rangefinder 
Filters 

Right  laser  

rangefinder 
Filters 

- autopilot functions, 

- user PID loops, 

- obstacle avoidance controller, 

GPS, IMU, pressure sensors 

Actuator   

UART 

UART 

XBee Pro 2,4GHz transceiver 

RC receiver   

XBee Pro 2,4GHz transceiver LAPTOP - Horizon GCS RC transmitter   
 

Fig. 5 The diagram of designed autonomous obstacle avoidance system 

GPS and IMU sensors are internal parts of the autopilot and they are used in 

standard control functions and waypoint navigation. GCS (ground control station) 

is communicating with the autopilot via 2,4 GHz radio modem. M|AV can be also 

controlled manually using standard RC equipment. The strategy presented in the 

paper will be only an extension of standard functions of MP2128
Heli

.  

Laser rangefinders should measure range between MAV and buildings during a 

flight in streets’ canyons. Of course there are many smaller objects i.e. street lights, 

traffic lights, trees, road signs which can’t be properly detected by the obstacle 
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avoidance strategy. This is an important disadvantage. Any small obstacle detected 

by laser rangefinders will introduce peaks in ranges sequence similar to random 

disturbances or noise. So it could probably affect on MAV behavior negatively 

making it unstable. We decided to filter out these peaks as useless information. It 

can be achieved by enabling median and averaging filters which are standard fea-

tures of MLR100 laser range finder. Hence it requires making an assumption that 

the MAV is able to fly in streets’ canyons at patrol altitude. 

2.3   Signal Flow and Processing 

The diagram of signal flow and signal processing is presented in Figure 6. 
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Fig. 6 The diagram of signal flow 

The initial step of signal processing is filtration essential for eliminating range 

peaks generated by small obstacles, wind or other disturbances. It will be done by 

internal filters of laser rangefinder MLR100 (median filter and averaging filter). 

MLR100 transmits filtered range values over a serial port, so they are almost ready 

for use. If the MLR100 internal signal processing become to be inadequate, there 

will be possibility to introduce software filtration realized by the autopilot. But we 

have to keep in mind fact that additional computations are able to slow down 

autopilot operation. 

The next step of signal processing is coordinates frame transformation. Obstacle 

coordinates expressed in body frame can be derived from range value when α angle 

is known (Equation 1).  
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where: D
*
BF – measured range (body frame), 

 α – angle between laser beams, 

 xBF, yBF – obstacle coordinates in body frame. 

Next the body frame obstacle coordinates must be transformed to NED 

(North-East-Down) frame. It allows to determine true range between obstacle and 

MAV. Formula of transformation is given by equation: 
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where:  xBF, yBF – body frame obstacle coordinates, 

xNED, yNED – NED frame obstacle coordinates, 

φ – actual roll angle, 

θ – actual pitch angle. 

NED frame coordinates can be used to compute range D
*

NED expressed in NED 

frame.  

( )22*

NEDNEDNED yxD +=
                                       

(4) 

The next step is computing derivative of D
*

NED and use it as control signal, what 

makes obstacle avoidance system  sensitive to velocity and direction of approaching 

MAV to obstacle. Because if (D
*
NED)/dt equals zero, it would mean that the MAV is 

flying parallel to the obstacle. The maximum value of (D
*
NED)/dt presents situation 

when the MAV is flying towards to obstacle, so collision probability increases.  

The final step of signal processing is setting up thresholds which allow ignoring 

obstacles placed further than specified safe range value Dsafe. It also allows ignoring 

obstacles, which MAV are receding from ((D
*
NED)/dt is a positive value (Equation 

5)). Thresholds ensures that relevant component of PID’s input signal will equal 

zero (Equation 6). The PID’s input signal PIDin is defined as follows: 
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Where: ED – first component of PID input signal, 

Dsafe – safe range to obstacle, 

D
*

NED – range to obstacle expressed in NED frame, 

ED
* 

– the MAV to obstacle approaching rate- second component of PID 

input signal, 

PIDin – input signal of PID controller. 

Presented definition of PID’s input signal makes the obstacle avoidance strategy 

activate only when the MAV is approaching towards or too close to obstacle. Because 

MAV to obstacle approaching rate ED
*
is proportional to the MAV speed, the obstacle 

avoidance strategy is indirect function of the MAV speed, Whereas PIDs’ outputs has 

the sense of desired roll angle with opposite sign for each PID (left PID sign + and 

right PID sign -).   

2.4   Obstacle Avoidance Controller 

The role of the obstacle avoidance controller is to specify what flight control task 

should be considered actually: waypoint navigation or obstacle avoidance. Its input 

signals are outputs of PIDs and actual values of both D
*
NED ranges. The obstacle 

avoidance controller works as a kind of commuting element which switches control 

of desired roll angle between PIDs and autopilot waypoint navigation dependently 

on actual obstacle position. The desired heading angle of delta-wing MAV is a 

function of desired roll angle φC
 and desired velocity V

C
. Then having constant 

desired velocity V
C
 the strategy of desired roll angle control realized by the obstacle 

avoidance controller is described by Equation 6 (Figure7). 
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(6) 

where: φC
– the MAV desired roll angle, 

 φautopilot– desired roll angle from waypoint navigation, 

 φPIDleft– desired roll angle from left PID, 

 φPIDright– desired roll angle from right PID, 
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Fig. 7 Control strategy of desired roll angle realized by obstacle avoidance controller 

If outputs of both PIDs are zero, waypoint navigation will control the desired roll 

angle (Figure 7-1). When both of them have two different non-zero absolute values, 

desired roll angle will be calculated as a sum of both PIDs’ outputs (Figure 7-4). But 

at the moment it’s necessary to mention that φPIDleft is positive desired roll angle 

(right wing down) and φPIDright is negative desired roll angle (right wing up). So 

φPIDleft makes the MAV turning right and φPIDright makes the MAV turning left.  

Another situation is occurring when only the left PID output is zero, or when both 

PIDs outputs have the same non-zero absolute values and D
*
NED value from left 

sensor is greater than D
*
NED from right sensor (Figure 7-3 and Figure 7-6). In the 

case the right PID output will control the desired roll angleφC
. The last one case is 

opposite to the pervious. The left PID output will control the desired roll angleφC
,
 

when only the right PID output is zero, or both PIDs outputs have the same non-zero 

absolute values and the D
*
NED value from left sensor is smaller than the D

*
NED from 

right sensor(Figure 7-2 and Figure 7-5).    

In summary the obstacle avoidance controller controls the desired roll angle 

accordingly to actual state of surrounding obstacles and coordinates of the next 

waypoint. 
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3   Simulation 

3.1   Delta Wing MAV Model 

The simulations of proposed obstacle avoidance strategy were performed in 

MATLAB – SIMULINK environment, because at the moment there is no possi-

bility to involve light simulator, like it’s possible for Kestrel autopilot [12]. Hence 

adequate model of MAV is required for deriving simulated flight paths. We used 

simple delta-wing MAV model which is defined by following equations [6]: 
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where: x, y – MAV actual coordinates, 

 V– the MAV actual velocity, 

 V
C
– the desired MAV velocity, 

ψ– the MAV actual heading angle, 

 φ– the actual roll angle, 

 φ– the desired roll angle, 

 αφ, αV– time constants of MAV dynamics, 

 g – the gravitational constant. 

The model is simple, but it’s sufficient for our simulations, which main purpose is 

to present trajectory of MAV flight in different scenarios of surrounding obstacles. 

The model excludes several parameters of MAV flight in the real world, which are 

more dependent on autopilot performance than rather on the obstacle avoidance 

strategy. Creating the individual autopilot and its control software is not the purpose 

of our research. We decided to use commercial MP2128
Heli

 autopilot, so we can 

afford to introduce presented simplifications. But the important part of our future 

flight tests will be precise autopilot tuning to ensure good flight performance in 

different weather conditions. 

Our simulations assume that the flight path is controlled by two parameters: 

flight velocity V
C 

and desired roll angle φC
. We also assumed that the flight velocity 

V
C
 is a constant and only desired roll angle φC 

is controlled by the obstacle avoid-

ance strategy. 
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3.2   Autopilot Model 

A autopilot model is also required for good simulation performance. Because the 

main purpose of the simulation is presenting only 2D flight paths, autopilot model 

functions were restricted to the waypoint navigation realized by heading angle 

control. The autopilot was modeled by a single PID controller which minimizes the 

track angle error between the actual heading angle and the actual bearing angle 

pointing on the next waypoint. So the model can be formulated as follows:  
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(8) 

where: ψerr – the track angle error, 

 ψ – the actual heading angle, 

ψWP – the actual bearing angle pointing on the next waypoint WP, 

 x, y – actual coordinates of MAV, 

 xWP, yWP – coordinates of the next waypoint WP, 

PID – the transitions function of PID, 

 φautopilo t– the desired roll angle. 

The desired roll angle φautopilot is the model output and it is applied when the actual 

range to the nearest obstacle is greater than safe range Dsafe (Figure 7-1).   

The whole simulation model is presented in figure below. 

 

Fig. 8 The simulation model of proposed autonomous obstacle avoidance strategy. 
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Four synthetic maps representing streets’ canyons and obstacles were used in 

flight simulations. 

4   Results 

Four maps of environment characterizing different flight scenarios were prepared to 

present the control strategy possibilities. Two of them are concerning the problem 

of flight in streets’ canyons. Next two present the problem of obstacle avoidance. In 

each simulation the level flight with initial heading angle was started at the point 

marked as SP. The level flight target was the next waypoint marked as WP. Results  

 

 

Fig. 9 The MAV flight path in the first simulation: fight in street canyon. Initial heading  

angle –00, starting point SP – x=50,y=350, the next waypoint WP – x=1000,y=550. 

 

Fig. 10 The MAV flight path in the second simulation: fight in street canyon. Initial heading 

angle – 00, starting point SP – x=50,y=450, the next waypoint WP – x=1000,y=200. 
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Fig. 11 The MAV flight path in the first simulation of obstacle avoidance. Initial heading 

angle – 00, starting point SP – x=50,y=750, the next waypoint WP – x=1000,y=50. 

 

Fig. 12 The MAV flight path in the second simulation of obstacle avoidance. Initial heading 

angle – 500, starting point SP – x=50,y=50, the next waypoint WP – x=900,y=600. 

of simulations are presented in Figures 9-12. Obstacles are represented by shapes 

filled with black color. The maps boundaries were treated as obstacles, so MAV 

should also avoid them. Following values of simulations’ and models’ parameters 

were used: V
C
=12 m/s, Dsafe=60 m, α=30

0
, αV =0.5, αφ=0.5. It also was assumed that 

there was no wind or other external disturbances during simulated flight. 

If we take a look on results presenting flight paths, we will notice that the MAV 

always flies holding a safe range to obstacle. Of course sizes of all obstacles are 

much bigger than MAV size. So the MAV position is represented by single points 

creating the flight paths in all figures. That’s why some turns seems to be too sharp 

to perform by delta-wing MAVs. However more details of the obstacle avoidance 

strategy behavior can be determined by observation and analysis of obstacle 

avoidance controller inputs and outputs: D
*
NED, φC

, φautoplot and ψ. Plots of specified 

signals are presented in figures 13-15. They are concerning the simulated scenario 

of obstacle avoidance from figure 11.  
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Fig. 13 Simulated range signals D*
NED. Yellow – left laser rangefinder, pink – right laser 

rangefinder. 

 

Fig. 14 Simulated φC  signals – desired roll angle. 

 

Fig. 15 Simulated φautopilot  signals – desired roll angle from waypoint navigation (yellow)  

and ψ– actual heading angle (pink). 



Obstacle Avoidance Strategy for Micro Aerial Vehicle 133

 

Simulated flight path are not the shortest path of possible MAV flight (for ex-

ample in Figure 11), because in our research we skipped the problem of path op-

timization. Path planner requires computations which can’t be handled by the 

autopilot without performance drop. In some research path planner was design as a 

separate PC application, and computed optimal patch was uploaded to the autopilot 

as waypoints list [12]. So presented path planner can’t be treated as a part of 

autonomous system. Absence of path planning function is some disadvantage of 

presented obstacle avoidance strategy. But the main research purpose is to present 

functional idea of obstacle avoidance strategy which would be based on available 

equipment and fit requirements of micro aerial vehicles. 

5   Testing Airframe 

To verify received simulation results we start to prepare a testing airframe based on 

delta wing RC model made with ELAPOR. ELAPOR is a material which gives 

great possibility of introducing any required modifications in airframe body. It’s 

also resistant to damages in the case of eventual crash and easy to repair.  

The MP2128
heli

 autopilot, speed controller and standard 35 MHz RC receiver 

were mounted inside the airframe cockpit which is closed with plastic cover pro-

tecting onboard electronics. XBee Pro 2,4 GHz radio modem, GPS antenna and 

batteries were placed in cavities located in both wings symmetrically. We also de-

signed special balsa enclosures for MLR100 laser rangefinders which will be fixed 

to the wings surface. The laser rangefinders are communicating with the autopilot 

via two separate serial ports. These serial ports were configured by modifying as-

signment of unused digital outputs and inputs of MP2128heli onboard processor.  

The autopilot firmware was expanded with routine of obstacle avoidance. 

 

Fig. 16 The testing airframe – delta wing MAV 

Actually we are preparing to perform first flights which will present the airframe 

performance and give required data for the autopilot and the obstacle avoidance 

strategy tuning. When all configuration procedures are completed, the airframe will 
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be fully functional and ready to perform autonomous flights, which verifies obstacle 

avoidance strategy in different collision scenarios.    

6   Conclusion  

Figures 9-12 present results of four different simulations which routed flight paths 

of MAV being under control of the obstacle avoidance strategy. They are clearly 

proving possibilities of the strategy and allow expecting its effectiveness in real 

experiments. In each case the MAV flight succeeded and the next waypoint  

was reached without collision with surrounding obstacles.  Results presented in 

Figures 9-10indicate also possibilities of the MAV flight in streets’ canyons. This is 

the essential feature for the MAV autonomous flight in urban environment. The 

obstacle avoidance strategy meets also requirements of autonomous obstacle 

avoidance what was shown in Figures 9-10. 

In summary it can be underscored that the aim of the paper was achieved and the 

research can be continued. Basing on these results it can be predicted that the 

proposed obstacle avoidance strategy will effective and can be handled by com-

mercial autopilots like a MP2128heli and micro aerial vehicles. The advantage of 

the algorithm would be fast response thanks to real-time signal processing. Others 

methods involving path planners or image processing introduce some delays by a 

reason of much computation time. The obstacle avoidance strategy verification will 

be the next step of our research.  
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Post-Optimal Sensitivities of Flight Trajectories 
with Respect to Selected Parameters 

C. Büskens, F. Fisch, and F. Holzapfel 

Abstract. In the paper at hand, the sensitivities of optimized flight trajectories 

with respect to selected parameters are to be investigated. Especially atmospheric 

influences like wind or deviations from the standard atmosphere shall be regarded 

since those parameters strongly influence the respective optimal trajectory. 

1   Introduction 

In many guidance or control applications, an aircraft, e.g. an UAV, ought to follow a 

given reference trajectory. Often, the reference trajectory therefore is obtained by a 

high-fidelity offline-optimization of the specific aircraft mission before the flight 

mission is conducted. Then, this reference trajectory together with an appropriate 

guidance or control law are stored onboard. For the offline-optimization, certain pa-

rameters concerning the environmental conditions are required. Usually, the values 

of those parameters are not known exactly a priori or might even be subject to 

change during the flight mission. Consequently, the offline-computed reference tra-

jectory may neither be valid nor optimal any more. In most cases, an online  

re-optimization of the flight-mission utilizing the high-fidelity offline-optimization 

algorithm is by far too time-consuming. One possibility would be to use a simplified 

optimization algorithm that is real-time capable and can thus be implemented on-

board. For example, Yakimenko et al. ([8], [9]) utilize high-order polynomials as 

reference functions to describe an aircraft trajectory, thereby reducing the optimiza-

tion problem to the determination of a few parameters. The solution of the reduced 

optimization problem can then be accomplished online. In this paper, another possi-

bility is introduced where valid, sub-optimal reference trajectories can be computed 

in real-time onboard (see e.g. [6], [7]) without any time-consuming online re-

optimization of the aircraft trajectory. At this, post-optimal sensitivities of the  

optimized trajectory with respect to selected parameters are calculated offline. The 

sensitivities can then be utilized to restore in real-time a valid, high-quality close-

optimal reference trajectory for the guidance of aerial vehicles if perturbations in the 

environmental parameters occur. In this case, the tracking of the guidance trajecto-

ries by any flight control system is facilitated since the guidance trajectories can be 

corrected with respect to changed environmental influences.  
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2   Aircraft Simulation Model 

The flight system dynamics are represented by a 3-DoF point-mass simulation 

model. In the following, the equations of motion are depicted and the proper in-

clusion of the wind influence within the point-mass simulation model is explained. 

Furthermore, an atmospheric model is given that allows to take into account tem-

perature deviations from the standard atmosphere. 

The position equations of motions are specified in the NED-Frame. The NED-

Frame is a coordinate system with its origin located at the aircraft’s center of grav-

ity. The x-axis of the NED-Frame is pointing into northward, the y-axis into east-

ward and the z-axis into downward direction. The position equations of motion are: 

 (1) 

where VK is the kinematic velocity, ȤK the kinematic course angle and ȖK the kine-

matic climb angle. Assuming flight over flat, non-rotating earth, the following 

simplified translation equations of motion result: 

 (2) 

 
(3) 

 
(4) 

Here, m represents the aircraft mass and is assumed to be constant. The total sum 

of external forces Σ  given in the Kinematic Reference Frame K is made up of 

the gravitational force , the aerodynamic force and the propulsive force : 

 (5) 

The gravitational force  is given by 

 
(6) 

where g denotes the gravitational constant. The transformation matrix MKO is giv-

en by Eq. (18). The aerodynamic force  with respect to the center of gravity G 

of the aircraft is computed by the following formula: 
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(7) 

where D denotes the drag, Q the aerodynamic force in the direction of the y-axis 

of the Aerodynamic Frame A and L the lift. The transformation MKA is given by 

Eq. (17). The dynamic pressure is calculated from the air density ρ and the 

aerodynamic velocity VA: 

 (8) 

The aerodynamic coefficients are given by the following equations, where a linear 

lift curve and a quadratic drag polar are implemented: 

 (9) 

(10) 

(11) 

Here, αA is the commanded angle of attack and ȕA the commanded sideslip angle. 

The propulsion force  is assumed to be aligned with the x-axis of the aircraft’s 

kinematic velocity: 

 
(12) 

The following relationship for the thrust force T is implemented that applies to 

propeller-powered aircraft: 

 (13) 

where Tmax is the maximum thrust, Vref the reference speed, ρref the reference air 

density and nρ the density exponent. δT is the commanded thrust lever position. For 

the computation of the air density ρ, the atmospheric model given by Eq. (14) is 

utilized where the air density is a function of the aircraft’s downward position z 

given in the NED-Reference Frame: 
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Here, Tref is the reference temperature, Ȗref the reference temperature gradient and 

R the specific gas constant. Eq. (14) is valid in the troposphere layer, i.e. it is valid 

for altitudes between -2km and 11km. The reference values involved in the at-

mosphere model are taken from the International Standard Atmosphere DIN ISO 

2533 [5]. Temperature deviations from the norm standard atmosphere can be taken 

into account by adjusting the reference temperature Tref accordingly: 

 (15) 

Furthermore, a differential equation for the aerodynamic bank angle μA is added to 

the simulation model: 

 (16) 

with p being the commanded roll rate. The aerodynamic force acting on the air-

craft’s center of gravity is computed in the Aerodynamic Frame A and then trans-

formed into the Kinematic Reference Frame K with the help of the transformation 

matrix MKA between the Aerodynamic Frame A and the Kinematic Reference 

Frame K (see Eq. (7)). The transformation matrix MKA between the Aerodynamic 

Frame A and the Kinematic Frame K is given by: 

 (17) 

(18) 

 

(19) 

 

(20) 

where ȤA represents the aerodynamic course angle and ȖA the aerodynamic climb 

angle. The aerodynamic course angle and the aerodynamic climb angle have to be 

restored utilizing the respective kinematic relationships, taking into account the in-

fluence of the wind. Therefore, the aerodynamic velocity of the aircraft’s center of 

gravity with its components denoted in the NED-Frame is first obtained by: 

 (21) 
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Here,  represents the wind field given in the NED-Reference Frame with  

its components uw, vw and ww, where uw points into the northward, vw into the  

eastward and ww into the downward direction. With the help of the aerodynamic 

velocity , the aerodynamic course angle ȤA, the aerodynamic climb angle ȖA 

and the absolute aerodynamic velocity VA can be restored: 

 
(22) 

 
(23) 

 (24) 

 
(25) 

In total, the aircraft simulation model comprises seven states that are the north-

ward position x, the eastward position y, the downward position z, the kinematic 

velocity VK, the kinematic course angle ȤK, the kinematic climb angle ȖK and the 

aerodynamic bank angle μA. The command inputs are the aerodynamic angle of at-

tack αA, the aerodynamic sideslip angle ȕA, the roll rate p and the commanded 

thrust lever position δT. For the solution of the air race trajectory optimization 

problem described in paragraph 3, the commanded sideslip angle ȕA has been set 

to zero and the commanded thrust lever position δT has been set to 1. 

3   Air Race Trajectory Optimization Problem 

The task of the air race trajectory optimization problem is to find the minimum 

possible race time tf for a given race track. The optimal control problem can be 

stated as follows: Determine the optimal control history 

 (26) 

and the corresponding optimal state trajectory 

 (27) 

that minimize the Bolza cost functional 

  (28) 
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subject to the state dynamics  

 (29) 

the initial and final boundary conditions 

 (30)

 
 

(31)

the interior point conditions 

 
 

(32) 

and the equality and inequality conditions 

 
 

(33) 

  (34) 

For the air race trajectory optimization problem, the Bolza cost functional re-

duces to a Mayer functional since the only objective is to minimize the final time: 

  (35) 

The state vector x, the control vector u and the according state dynamics were 

given in paragraph 2. The initial and final boundary conditions as well as the inte-

rior point conditions are defined by the positions respectively the type of the vari-

ous air race gates. While no equality path constraints are present, inequality path 

constraints arise from safety regulations or from aircraft performance limits. First 

of all, a certain ground clearance has to be respected by the pilots: 

 
 

(36)

Furthermore, the safety regulations require that an upper limit and a lower limit of 

the load factor nz,B in the direction of the z-axis of the Body Fixed Reference 

Frame B is never exceeded: 

  (37) 

Besides the never-exceed speed Vmax given by the safety regulations, the velocity 

VA of the aircraft must not go below the stall speed Vstall of the aircraft: 

  (38) 

Additional inequality path constraints are due to aircraft performance limitations 

with respect to the minimum and maximum angle of attack αA as well as the min-

imum and maximum roll rate pK: 
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  (39)

  (40)

The corresponding values for the various bounds of the inequality path constraints 

are listed in Table 1. 

Table 1 Path constraints specifications 

Path constraints specifications 

Altitude zmin [m] 7.5 

load factor nz,min [-] -2.0 

nz,max [-] 12.0 

Velocity Vstall [m/s] 25.0 

Vmax [m/s] 102.9 

angle of attack αA,min [rad]/[°] -0.35/-20.02 

αA,max [rad]/[°] 0.35/20.02 

roll rate pK,min [rad/s]/[°/s] -7.33/-420.0 

pK,max [rad/s]/[°/s] 7.33/420.0 

4   Parametric Optimal Control Problems with Control and 

State Constraints 

Problem (1) to (40) defines a parametric nonlinear control problem subject to con-

trol and state constraints of the following form: 

Parametric control problem OCP(p): 

 (41) 

Here x(t) œ ℝn
 denotes the state of a system and u(t) œ ℝm

 the control in a given 

time interval [t0, tf]. Data perturbations in the system are modeled by a parameter p 

œ P ú ℝ q
. The functions g:ℝ näPöℝ, f:ℝn+mäPöℝn

, φ:Pöℝn
, ȥ: ℝnäPöℝ r

, 

0 ≤ r ≤ n and C:ℝn+mäPöℝk
 are assumed to be sufficiently smooth on 

appropriate open sets. The admissible class of control functions is that of 

piecewise continuous controls. The final time tf is assumed to be free. 
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Note, that the Bolza cost functional in (28) can easily be transformed to the 

objective functional in (41) by simply introducing an additional differential 

equation for the integral term in (28) and initial value zero. 

5   Numerical Solution of Optimal Control Problems by 

Nonlinear Programming Techniques 

Direct optimization methods for solving the optimal control problem OCP(p) are 

based on a suitable discretization of problem (41). In this section we describe an 

approach where for simplicity the discussion will be restricted to Euler's method. 

It is mentioned that the sensitivity analysis that is utilized for the computation of 

the sub-optimal reference trajectories is not limited to the collocation method 

described below. Moreover, any other direct optimization method like for example 

a multiple shooting method could constitute the basis for the sensitivity analysis 

outlined in paragraph 6. 

Choose a natural number N and let τi œ [t0, tf], i = 1, …, N, be mesh or grid 

points with  

 (42)

For notational simplicity we assume that the discretization in (42) is equidistant: 

 (43) 

Let the vectors x
i
 œ ℝ n

 respectively u
i
 œ ℝ 

 m
, i = 1, …, N, be approximations of the 

state variable x(τi), respectively control variables u(τi) at the grid points. Then 

Euler's approximation applied to the differential equation in (41) yields 

 (44) 

We treat the control variables together with tf as the only optimization variables 

while the state variables are obtained recursively from the state equation (44). 

Therefore, we consider the optimization variable  

 (45) 

and compute recursively the state variables from (44),  

 (46) 

as functions of the control variables with initial condition x
1
 = φ(p) given in (41). 

This leads to the following discretized optimal control problem 
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Discretized optimal control problem DOCP(p): 

 (47) 

Let G(z) = (G1(z), …, GNc
 (z)) denote the collection of functions defining the 

equality and inequality constraints of (47). Then the number of optimization 

variables Nz = mN + 1 and constraints M = kN + r results in a dense structure in the 

Hessian of the Lagrangian (49), whereas about 50% of the elements in the 

Jacobian of the constraints are zero. Setting the dimensions Ne = r, Nc = Ne + kN, 

the discretized control problem DOCP(p) defines a NLP-problem of the form 

NLP(p): 

 
(48) 

Problems of the form (48) can be solved efficiently using sequential quadratic 

programming (SQP) methods; compare, e.g., the code WORHP of Büskens and 

Gerdts. Instead of Euler's method incorporated into the relations (44) or (46) one 

can use higher order integration methods combined with a higher order control 

approximation. The convergence of solutions discretized via Euler's method to 

solutions of the continuous control problem has been proved in Malanowski, 

Büskens and Maurer [4]. 

The Lagrangian function for problem NLP(p) is  

 (49) 

Let be an optimal solution for NLP(p) with associated Lagrange multiplier  

satisfying first order necessary optimality conditions. Consider the set of active 

indices defined by Ia(p) ú {i œ {1, …, Nc} | Gi( , p) = 0} and let ma ú #Ia(p). 

Denote the active constraints by G
 a
 ú (Gi)iœIa(p) and the multiplier corresponding 

to active constraints by œ ℝma
. Let  be the Jacobian with dimension maäNz. 

The following strong second order sufficient conditions are well known, cf., 

Fiacco [3]. 

Strong Second Order Sufficient Conditions 

Assume that 

a) F and G are twice continuously differentiable with respect to z and p, 

b) the gradients in are linearly independent, i.e. rank( ( , p)) = ma, 

c) strict complementarity  > 0 of the Lagrange multipliers holds, 

d) the Hessian of the Lagrangian is positive definite on Ker( ( , p)), 
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 (50) 

Then  is a local minimum for NLP(p). 

A numerical check of the SSC (50) consists in evaluating the projected Hessian 

on Ker(  ( , p)) and in verifying that its eigenvalues are positive, cf. Büskens 

and Maurer [1]. 

6   Parametric Sensitivity Analysis 

A thorough treatment of parametric sensitivity analysis can be found in Fiacco [3], 

a compact overview on parametric sensitivity analysis for discretized optimal 

control problems is given in Büskens and Maurer [1]. 

 

Solution Differentiability for NLP(p): 
Suppose that the optimal solution (z0, μ0), satisfies the strong second order 

sufficient conditions for the nominal problem NLP(p0). Then for p near to p0 the 

unperturbed solution (z0, μ0) can be embedded into a C
1
-family of perturbed 

optimal solutions (z(p), μ(p)) for NLP(p) with (z(p0), μ(p0)) = (z0, μ0). The active 

sets Ia(p) coincide with Ia(p0) and hence it follows that μi(p) = 0 for i – Ia(p). The 

sensitivity differentials of the optimal solutions and Lagrange multipliers are 

given by the formula  

 
(51) 

Moreover, the sensitivity of the objective function is obtained from  

 (52) 

Note that the so-called Kuhn-Tucker matrix on the right hand side of (51) is 

regular since second order sufficient conditions (50) are assumed to hold. One 

possibility of evaluating the Kuhn-Tucker matrix and the incorporated Hessian Lzz 

consists in using BFGS-updates which are obtained in the process of computing 

the nominal solution. However, these BFGS-updates usually give rather inaccurate 

approximations. Hence, in our approach the Hessian Lzz and the Kuhn-Tucker 

matrix will be evaluated after computing the optimal solution (z0, μ0), which yields 

much more accurate results. 

Eq. (52) can be used in a first order Taylor expansion of the objective 

functional, 
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where the notation [p0] stands for all nominal arguments. The computation of 

dz/dp(p0) via (51) yields an approximation for the sensitivity differentials of the 

perturbed optimal control solutions at the mesh points, i.e., for the quantities  

 (54) 

Since a free terminal time tf is handled as an additional optimization variable in 

DOCP(p0), its sensitivity differential dtf/dp(p0) can likewise be calculated from 

equation (51). 

Eq. (54) grants also the sensitivity differentials of the state with respect to the 

parameter, if we take into account the recursive formulation (44) together with the 

relation (46). The state sensitivities dx/dp(τi ,p0) are obtained from  

 (55) 

7   Result 

The method proposed for the real-time update of optimized aircraft trajectories is 

applicable to a large variety of aircraft trajectory problems if variations in envi-

ronmental parameters occur. The main practical relevance of the wind example 

may be for civil airliners or other aircraft flying on prescribed routes. However, 

the air race example chosen as the underlying trajectory optimization problem is 

very challenging since moment dynamics is no longer negligible, the trajectory is 

highly curved in all dimensions, states and controls frequently hit saturations and 

the aircraft is flying at a high dynamic bandwidth for a longer period of time. By 

choosing the air race example it was intended to demonstrate the capability and 

potential of the approach assuming that showing its applicability for this example 

includes the applicability for problems with lower dynamics. 

In Fig. 1, the optimized race trajectory for the air race that took place in San 

Diego in 2009 is shown. The optimal air race trajectory has been obtained utilizing 

a direct optimization method. The colorization of the trajectory indicates the sensi-

tivity of the optimized trajectory with respect to wind blowing along the y-axis of 

the depicted coordinate system. At this, the following measure for the sensitivity 

of the trajectory with respect to the selected parameter has been utilized: 

 (56) 

where x denotes the northward, y the eastward and z the downward position of the 

aircraft. As can be seen from Fig. 1, especially at the Quadro (i.e. at the 270° de-

gree turn) where the aircraft pulls up the trajectory is very sensitive with respect to 

the considered wind influence. 
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Fig. 1 Sensitivity of the optimized trajectory with respect to wind blowing along the  

y-axis of the depicted coordinate system 

8   Conclusions 

In the paper at hand, the parametric sensitivities of air race trajectories with re-

spect to wind are investigated. Therefore, a simulation model is implemented that 

takes into account wind influences. The air race trajectory optimization problem is 

formulated and the discretization approach that transforms the optimal control 

problem into a nonlinear programming problem is introduced. For the optimal race 

trajectory, the sensitivities with respect to the selected parameters are computed. It 

has been found that the trajectory is quite sensitive with respect to wind if an 

aerobatic maneuver is flown that requires the aircraft to pull up. By the proposed 

method, offline-optimized reference trajectories utilized for the guidance of flight 

vehicles can be updated in real-time onboard the aircraft to give valid, close-

optimal reference trajectories taking into account deviations of environmental pa-

rameters. At this, the tracking of the guidance trajectories in the presence of per-

turbed environmental parameters can be facilitated. 
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Simple Control Law Structure for the Control of
Airplanes by Means of Their Engines

Nicolas Fezans

Abstract. In this paper a simple control law structure is presented for the control

of airplanes using only the engines’ thrust. For the design of such a propulsion

controlled aircraft control law, the approach followed in this work is to look for

the right level of performance in order to avoid both excessive engines activity and

reduction of robustness properties. Another goal is to keep the control law and its

tuning as simple as possible: for this a control law structure whose terms can easily

be interpreted is proposed. The capability of the proposed control law to permit safe

landing was shown by simulator tests as well as flight tests.

1 Introduction

One of the objectives of the research conducted at the DLR (German Aerospace

Center) Institute of Flight Systems is to improve the safety of all types of aircraft.

This objective takes a central part in many projects concerning human-machine in-

teraction (e.g. situation awareness, training of pilots), detection of adverse condi-

tions (e.g. gust, wake-vortices), fault detection and isolation, and reconfiguration of

control laws.

In the past, several incidents and accidents were caused by partial or total loss of

aircraft primary control systems. Even though a total loss of aircraft primary con-

trol systems is theoretically extremely rare, it did happen several times [1] with an

estimate of more than 1200 casualties made in 1996 [2]. The fact that such events

are extremely rare must be demonstrated during the certification process. Indeed,

looking at the past as well as at accidents that happened more recently (e.g. DHL

A300 in Baghdad in 2003), it appears clearly that the loss of primary control devices

is generally a consequence of other failures with some complex relations between

Nicolas Fezans

DLR (German Aerospace Center) Institute of Flight Systems, Lilienthalplatz 7,

38108 Braunschweig, Germany

e-mail: nicolas.fezans@dlr.de
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them and in some cases related to maintenance errors or to external causes. The in-

teractions between the faults and failures in such systems can be extremely complex.

The author’s point of view is that even with very serious work on safety analysis a

significant number of elements of the fault tree of such complex systems will be

omitted. The level of redundancy and the extensive use of computers and real tests

in the design of modern aircraft allowed to reach very high safety standards. How-

ever, human errors in the maintenance or the design of the aircraft can still happen

as well as adverse weather conditions, wake vortex encounters, or terrorist actions.

When technically and economically possible, design and implementation of emer-

gency systems capable of dealing with a wide spectrum of improbable situations

should be made. The propulsion-based emergency control law presented in this pa-

per is worth being integrated in modern transport aircraft as such an emergency

system.

Several studies have been conducted at NASA in the 1990’s to prove the feasibil-

ity of controlling the aircraft and landing using only the engines [1, 2, 3]. It appeared

clearly at that time that a system assisting the pilot is required and that with such

a system probability of casualties would drastically be reduced. Implementation of

such a system in aircraft equipped with an autothrottle would not require any new

hardware (and thus there would be no increase of weight) and for many modern

aircraft only software modifications would be required to include this new function-

ality. However, more than 15 years later still no civil transport aircraft possesses

such an emergency system. Even aircraft that were entirely designed after this tech-

nology was demonstrated in flight are not equipped!

In this paper, the case of total loss of primary control devices is considered. For

such a deteriorated airplane a control law based on engine thrust is designed with

the approach of keeping a very simple structure and using the lowest gains possible.

Longitudinal control is achieved using symmetrical variations of thrust and lateral

control using asymmetrical variations. This control strategy is similar to the one

studied at NASA in the 1990’s under the name of “Propulsion Controlled Aircraft”

(PCA). As the name PCA properly describes the content of the work presented in

this paper, it will also be used. At the DLR Institute of Flight Systems, experiments

on Fault-Tolerant Control (FTC) are made using the ATTAS research aircraft [4,

5, 6]: some of them leading to the control of the ATTAS using only the engines.

In particular, approaches based on Model Predictive Control (MPC) were tested

with the aim of reaching very high performance by taking directly into account

the limitations of the airplane and in particular of its actuators and engines. In the

current work a low-gain approach is preferred.

The paper is organized as follows: Section 2 presents the motivation for a struc-

tured control law with a low-gain tuning. Section 3 discusses the properties of the

aircraft with PCA control law that are required to permit safe landings. Section 4

presents the control law: its structure, tuning, and protections. Section 5 presents

a summary of the results obtained during a flight test that took place in November

2009 with the presented propulsion-based control law.
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2 Motivation for a Structured Control Law with a Low-Gain

Tuning

Failures are not always extremely severe and in some cases it makes sense to try to

integrate the deteriorated aircraft into the regular air traffic. The failures leading to

the use of a control law based only on the engines are very severe. In such cases, an

emergency would be declared and the real objective for the design of an emergency

system capable of controlling the aircraft by means of the engines is to permit an

acceptable landing. An acceptable landing for such an emergency system is, to the

author’s mind, a landing avoiding both the loss of human lifes and major injuries.

Relatively low vertical speed and normal attitude (slightly positive pitch, small roll)

are major criteria for such a landing.

Besides, in such a severe failure case, quite strong differences in terms of dy-

namical behavior between a nominal model of the airplane and the real deteriorated

airplane can be expected. For instance, the Boeing 747 of the Japan Airlines flight

123 had lost almost the entire vertical stabilizer and a significant part of the left

wing was missing in the case of the Airbus A300 of DHL in Baghdad. These dif-

ferences lead to the need for strong robustness properties of the system, either by

intrinsic robustness of the control law or by its adaptation. The robustness analysis

of airplanes with a propulsion-based control law is challenging due to the slow and

highly nonlinear responses of the engines. Their dynamics result from a combina-

tion of saturations, nonlinear dynamics and state-dependent rate-limiters. The use

of typical robustness metrics for design purposes in such a case is very difficult.

For this reason, it has been decided to focus in this work on the definition of a sim-

ple control law whose components can easily been interpreted. Thus, the approach

here is to compensate the lack of practically usable rigorous mathematical tools for

such problems by the use of physical interpretations. Precise evaluations of the ob-

tained robustness properties could also be made by means of Monte-Carlo methods

but have not yet been considered in this study. The only evaluations that have been

made until now rely on several hundreds of simulations. It should be noticed that

stability of the controller-augmented airplane is not required as pilots will be part of

the closed-loop. Moreover, a stability criterion does not permit to estimate whether

a pilot is really able to reach the airport and land or not.

However, to the best of the author’s knowledge no classical handling qualities

criterion is applicable to a propulsion controlled aircraft, therefore there is a need

for a new evaluation of handling qualities for such an airplane. An objective of this

research is thus to understand which design criteria are really important with pilots

in the loop and which criteria can be withdrawn. The purpose of this paper is not to

address this question, but to present the simple control law structure that has been

designed in order to ease future simulator and flight-test studies that will address

it. With an adequate tuning of this control law the pilots must be able to land suc-

cessfully in a wide spectrum of situations. Later on, once the required performance

criteria for such a propulsion controlled aircraft will be properly defined and under-

stood, the design and the validation of such an emergency system will be eased.
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A single set of parameters has been used on the entire flight domain and for

all configurations. The only scheduling made takes place in the inner loop which

controls the engines: the proportional gain depends on the rotational speed of the

fan (N1), see section 4.5. Such a choice would often be suboptimal, in particular if

we want to force the closed-loop to exhibit some defined behavior. But for such a

system the exact behavior of the controller-augmented aircraft is not very important:

what matters is that pilots succeed in controlling it and finally succeed in landing

the airplane. In our experiments and in the work presented here this single set of

parameters with a low-gain tuning allowed pilots to control the aircraft and to follow

both glideslope and localizer signals with a good precision. This shows that both

high-gain solutions and control strategies based on reference models are not required

for this application.

3 Requirements

In this section, the main requirements for successful approach and landing by means

of a PCA system are discussed with focus on how desirable they are, how difficult it

will be to reach them, and which trade-off between the performance criteria should

be made. Obviously, classical handling qualities criteria are not applicable for an

aircraft having a propulsion-based control law.

3.1 Longitudinal Control

The longitudinal motion is mainly composed of the phugoid mode and the short-

period mode. The period of the phugoid is generally between 30 and 60 seconds for

transport airplanes. The frequency of the short-period mode depends on the aircraft

and its center of gravity location, but would typically lie between 1.5 and 3 rad/s.

Increasing the total thrust of the engines leads to an increase of the energy rate of

the aircraft. To really know the effect of this additional thrust on the movement of

the aircraft, the pitch equation as well as the aerodynamics and mass characteristics

of the aircraft must be known. For typical configurations, a simplified reasoning

can be expressed as follows: a constant additional total thrust ΔTt = ∑i ΔTi > 0

leads to a positive variation of the flight path angle γ and vice-versa, i.e. ΔTi > 0 ⇒
Δγ(t → ∞) > 0 and ΔTi < 0 ⇒ Δγ(t → ∞) < 0. This makes it possible to control

the trajectory of the aircraft in the vertical plane.

With the typical frequencies and damping ratios of the short-period mode and of

the phugoid as well as the typical dynamics of engines, no real challenge is expected

in designing and tuning a control law assisting the pilots in the control of the flight

path angle. Such a control law will basically consist of controlling the phugoid (ac-

ceptable response time, good damping, and no static error on the flight path) while

avoiding unnecessary excitation of the short-period mode.



Simple Control Law Structure for the Control of Airplanes 155

3.2 Lateral Control

The lateral dynamics of an aircraft are composed of:

• the Dutch roll mode exhibiting a pair of complex conjugate and stable poles with

very low damping,

• the roll mode which is aperiodic and stable,

• the spiral mode which is slow and quite often slightly unstable.

As for the short-period mode, the Dutch roll mode and the roll mode are generally

too fast to be significantly modified by means of the engines, in particular in the low-

thrust domain that will generally be required for descent and approach. However, a

control law based on thrust can easily modify the spiral mode in order to ease its

control by a human pilot. For this, the coupling between yaw and roll is used: the

pilot controls only the roll motion and the control law generates a yaw motion by

means of asymmetric thrust allowing to get the induced roll corresponding to the

pilot’s commands. In previous studies PCA control laws were designed to follow a

reference bank angle φre f that was provided by the pilot. During the current research

activities several other possibilities have been investigated in the ATTAS ground

simulator. In particular a rate-command attitude-hold and a combination of roll rate

and bank angle commands are being tested. They are both based on the control law

presented hereafter: the difference is the way pilots provide the references to the

system.

Some reasonable goals for the lateral part of the control law are: to permit enough

maneuverability, to reduce pilot workload by damping the lateral dynamics, and to

ensure acceptable disturbance rejection without any action of the pilot.

4 Propulsion-Based Control Law

This section presents the propulsion-based control law that was used for the sim-

ulator tests and flight tests that are shown in section 5. The global structure of the

control law is first presented (section 4.1). After that all elements constituing this

structure are presented separately in sections 4.2 - 4.5. The easiness of the physical

interpretation of each component will appear clearly.

4.1 Global Control Structure

The global control structure is presented in figure 1. This structure is based on a cas-

cade control strategy with inner loops controlling the engines through commands in

terms of Power Lever Angle (PLA) and outer loops controlling the longitudinal and

lateral motions through symmetric and asymmetric thrust. The inner loops have a

crossfeeding in case of saturation as detailed in section 4.5 (see signals PLAsatL

and PLAsatR). A block labeled “Mixing priorities & Protections” connects the outer

loops to the inner loops by allocating longitudinal (N1cmd) and lateral (ΔN1cmd)

control actions to the two engines while satifying the limits for each engine.
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Fig. 1 Global architecture of the propulsion-based control law

This leads to the two references N1Lre f and N1Rre f that are provided to the inner

loops. Although this does not appear very explicitly in figure 1 the “Mixing prior-

ities & Protections” block also connects the two outer loops by means of the anti-

windup feedback signals N1sat and ΔN1sat . This particular point is more detailed in

section 4.4.

On one side imposing a particular structure on the controller generally restricts

the maximum achievable performance and robustness. On the other side it allows to

guarantee both, the physical meaning of the controller’s parameters and the simplic-

ity of the future implementation on on-board computers. In this work the trade-off

between reachable performance, engine activity, and robustness is investigated un-

der the assumption that a simple and comprehensible structure is required. Using

such a structure is therefore not a choice made during this work but a constraint

directly included in the addressed problem itself.

4.2 Longitudinal Controller

The longitudinal controller is presented in figure 2a. It uses a PID structure with

a filter (Knz(s)) on the derivative part and two feedforward elements: a dynamical

one KFF
∫

γ (s) and a static one KFFγ . The filter Knz(s) is required to remove the

medium and high-frequencies measured by the accelerometer and therefore remove

undesirable control activity due to gusts and turbulence. As the phugoid mode is

very slow with respect to the typical frequency content of these types of atmospheric

disturbances, a simple first-order low-pass filter with a bandwidth higher than the

frequency of the phugoid mode was used.

To get the desired reference tracking of the flight path angle γ , the static gain

KFF
∫

γ(ω = 0) must be equal to 1. The degrees of freedom provided by these trans-

fer functions allow seperate tuning of the reference tracking dynamics and of the

disturbance rejection properties. For instance, defining KFF
∫

γ(s) as a low-pass fil-

ter permits to use a relatively high value for K∫

γ without getting high overshoots

of the reference tracking response and without requiring high values of the deriva-

tive gain. Such a tuning is interesting because it gives the pilot a control input that

is not excessively sensible in the medium to high frequency domain while permit-

ting quite efficient rejections of disturbances by the feedback without any action of

the pilot. As the obtained performance was already satisfying with a simple gain

for KFF γ , this part of the feedforward has been kept static. If finer tuning of the
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Fig. 2 Longitudinal and lateral controllers

reference tracking response is required some additional degrees of freedom could

be obtained by using a transfer function instead of the KFF γ gain.

4.3 Lateral Controller

The lateral controller is based on the same principle as the longitudinal controller

and therefore has a similar structure. However, the types of dynamics to be con-

trolled by these two controllers are quite different. In the longitudinal case, the static

response to a symmetric variation of thrust is a variation of the flight path angle γ ,

which is directly the variable that must be regulated. In the lateral case, the static

response to an asymmetric variation of thrust is a variation of the sideslip angle

β , which is related to the second time derivative of the regulated variable φ (bank

angle).

This is a logical consequence of the fact that there is no roll authority and roll is

now controlled by means of the yaw-roll coupling. Therefore, the chosen controller

structure (figure 2b) is not only based on the bank angle φ and the roll rate p, but

also on the yaw rate r. Feedback based on the sideslip angle β would probably also

help getting good closed-loop properties, but β is generally not used in flight control

systems for various practical reasons. This fact has been taken as a constraint and is

not discussed. The feedback of p and r should ideally be restricted to high frequen-

cies in order to avoid counteracting normal turns. Indeed the feedback K∫

φ ensures

rejection of such side effects and simple gains Kp and Kr can be taken instead of

some high-pass filters.

During the landing task, the required corrections for the lateral movement are

much more demanding than for the longitudinal motion. This leads to a more dif-

ficult tuning of the lateral controller. The balance between good enough handling

qualities and high activity of engines is more difficult to find, in particular when

considering uncertainties of engines’ dynamics. As mentioned in the introduction,

the analysis tools for this type of nonlinear system are difficult to put into practice
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and with a pilot in the loop stability is neither a sufficient nor a required condition.

Thanks to the physical interpretations of each part of the controller, a good set of

parameters can be found in a short time. However, a more systematic and rigorous

methodology would be desirable.

4.4 Mixing Priorities and Outer Loop Protections

Authority on both longitudinal and lateral movements is severely restricted. The

same actuators (i.e. engines) are used for both and thus some mixing priorities

should be defined. As the controlled dynamics of the lateral motion are faster than

the controlled dynamics of the longitudinal motion, it seems logical to give priority

to the lateral control action over the longitudinal control actions in the case both

cannot be satisfied simultaneously. Moreover, a poor control of the spiral mode will

strongly disturb the control of the flight path angle, whereas the opposite coupling

can be neglected in most cases (e.g. without stall, overspeed, etc.). This priority

can be implemented as shown in figure 3 where the absolute value of the lateral

control signal is used in the definition of limits applied to the longitudinal control

signal. This permits to ensure that the sum of both control signals will respect the

constraints of each engine and to give priority to the thrust difference between them

over the mean thrust.
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Fig. 3 Mixing priorities and outer-loops protections

In figure 3, signals N1sat and ΔN1sat are respectively the differences between

input and output of longitudinal and lateral control saturations. They are used for

the “integrator hold” antiwindup strategy that is implemented in both controllers

(figures 2a-2b). After giving priority to the thrust difference over the mean thrust, the

signs of these signals are compared to the sign of the signals entering the integrators

in figures 2a and 2b. If their signs are identical, then the corresponding integrator

would be winding and this is prevented by holding the integrator at its previous

value. This way of preventing integrator windup does not allow to desaturate the
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command in order to keep some authority, but in the considered application there is

no need for a more complex antiwindup strategy.

4.5 Inner Loops for Engines Control

The structure of the inner loop controllers is depicted in figure 4. In this figure the

controller of the left engine is shown: the letters L and R are use to distinguish left

and right. For the right engine, the letters L and R must be inverted in this figure. The

controller is basically a PI controller with a static feedforward on the proportional

part and an “integrator hold” antiwindup strategy. In addition, the saturation signal

of the other engine (here PLAsatR) is crossfed in the output in accordance with the

priorities defined in the previous section.
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Fig. 4 Inner loop for the left engine control. Invert L and R for the right engine.

During our tests (both in simulator and in flight), the aforementioned antiwindup

and crossfeed in these inner loops did not appear to be absolutely required as outer

loop gains were intentionally chosen relatively low. For more performance-driven

tuning or in the presence of uncertainties these elements are likely to be of the

greatest importance. As they result in negligible increases of controller complexity,

they should be kept for all implementations of such controllers.

Note that in our applications, the parameters of these loops were systematically

taken equal for both engines even though significant differences of the left and right

engines were known and can be observed at medium to high frequencies (with re-

spect to closed-loop bandwidth). Note that engines may also differ significantly dur-

ing their life and the control law must be able to deal with such variations. This can

be achieved through the robustness of the control law or by means of adaptive tech-

niques. Adaptive techniques have not been considered at all during this work.

5 Summary of Flight Test Results

After several simulator tests of the system, the system was tested on Nov. 20, 2009

with the DLR ATTAS (VFW-614) research airplane. Goal of this flight test was to

verify and test the handling qualities provided by this propulsion-based control law

for navigation, ILS intercept, approach, and go-around. During previous simulator
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tests pilots were asked to rate several possible tuning options for the control law

parameters and to express their preferences. These preferences were also put into

perspective with their foreseeable drawbacks in terms of robustness, disturbance re-

jection properties, engine activity. During this analysis, rough assessments of the

closed loop at 11 points of the flight domain were made. The considered points are

based on 3 different flap configurations, 4 different speeds, 3 different altitudes, and

landing gear extended or retracted (note that not all combinations of these parame-

ters were considered). A 200 ms delay was introduced at engine inputs and for each

flight condition the frequency of the Dutch roll of the ATTAS model was artificially

shifted until the closed loop was destabilized. Besides, simulations with demand-

ing inputs (e.g. successions of maximal stick inputs at various frequencies around

the bandwidth of the stick to output transfer function) as well as simulations with

initial conditions were performed with the aim of analyzing both the input-output

behavior (including its nonlinearities) and the internal dynamics of the closed loop.

The objective was not to compute robustness margins, but rather to obtain a qual-

itative evaluation of each set of parameters regarding robustness and disturbance

rejection properties. More complete and precise evaluations will be performed later

for validation purposes and not for design purposes. This analysis lead to test two

controller parameter sets (called tuning A and tuning B hereafter) during this flight,

even though a clear preference for tuning A had already been identified before the

flight. It corresponds to a faster but less damped behavior for the lateral motion.
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Fig. 5 Reference tracking with the propulsion-based control law.

Weather was sunny and cloudless. Wind at 2500 ft was 40 to 50 kt from 220◦

and wind on ground was 5 kt from south-east. Light turbulence. After take-off and

activation of the experimental systems, some maneuvers were made by the test pilot

in order to check the dynamical behavior of the aircraft with this control law and to

provide data with strong enough inputs for future analysis. A short sequence of these

maneuvers is shown in figure 5. It shows how well the references were followed as

well as how the deviations caused by the very light turbulence are rejected in spite
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Fig. 6 Ground tracks of approaches performed with the PCA control law.

of low engine activity. After that the entire sequence “navigation, ILS intercept,

approach, and go-around” has been flown four times.

The preference for tuning A was rapidly confirmed before attempting to land and

therefore three of the four “intercept, approach, and go-around” sequences flown

were performed using the tuning A. The ground tracks of the sequences are shown

in figure 6. The longitudinal control was identical in both parameter sets and the

glide slope could be very well followed (results are not shown here). During the

four approaches, both localizer and glide-slope deviations could easily be controlled

with less than a half dot precision. In figure 6, the + symbols show the point where

the go-around was initiated and the × symbols where the flight path angle became

positive.

Comments of pilots and flight engineers made in the flight test report were that

“the airplane can very well be flown with careful inputs”, “desired heading can be

exactly controlled”, “during height changes maximal overshoot was 100 ft”, and

“there is no concern about pushing the experiment until landing on a long and wide

runway in calm air and without lateral wind”. Besides, during the flight and the

post-analysis, it appeared that dynamics of the engines at very high thrust were

significantly faster than predicted by the model used. This lead to a limit cycle in the

lateral control (about +/− 3◦ of β ) loop during max climb maneuvers. After having

analyzed the flight-test data, the correction of this limit cycle was straightforward

by adjusting the gains on the inner loops at high N1 values. As low N1 values are

required to descent, this gain modification has no consequence on handling qualities

during approach and landing.

6 Conclusion

To conclude, a simple structure for a propulsion-based control law has been pro-

posed. Simulator as well as flight tests have shown that performance obtained with

this structured control law with a low-gain tuning is clearly sufficient for the pur-

pose of landing. Further tests are required and planned in the next months which
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includes actual landings with this system. Some of the typical autopilot modes are

being developed as outer loops generating the references φre f and γre f given as input

of the control law that is presented in this paper. In particular an autoland function is

currently under development.The evaluation of the pros and cons of each mode de-

pending on damage cases while taking into account the variability of pilot behaviors

and weather conditions will be performed in the near future.

This work has been applied to the VFW-614 ATTAS airplane in both flight tests

and simulator tests. Within the next months, it will also be adapted and pursued

using two simulators of the DLR Institute of Flight Systems: the Airbus A320

ATRA (Advanced Technology Research Aircraft) simulator and the “Future Mil-

itary Transport Aircraft” simulator.

References

1. Burcham Jr., F.W., Burken, J.J., Maine, T.A., Gordon Fullerton, C.: Development and

Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-

11 Transport Airplane. Technical Paper: NASA/TP-97-206217. NASA Dryden

2. Burcham Jr., F.W., Maine, T.A., Gordon Fullerton, C., Webb, L.D.: Development and

Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine

Thrust on an F-15 Airplane. Technical Paper: NASA/TP-3627. NASA Dryden (1997)

3. Bull, J., Mah, R., Hardy, G., Sullivan, B., Jones, J., Williams, D., Soukup, P., Winters, J.:

Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Con-

trol for a B747-400 Jet Transport. Technical Memorandum: NASA TM-112191. NASA

Ames

4. de Almeida, F.: Waypoint Navigation Using Constrained Infinite Horizon Model Predic-

tive Control. In: AIAA-2008-6462. AIAA Guidance, Navigation and Control Conference

and Exhibit, Honolulu, Hawaii, USA, August 18-21 (2008)

5. de Almeida, F., Leißling, D.: Fault-Tolerant Model Predictive Control with Flight Test

Results on ATTAS. In: AIAA-2009-5621. AIAA Guidance, Navigation, and Control Con-

ference, Chicago, Illinois, USA, August 10-13 (2009)

6. de Almeida, F., Leißling, D.: Fault-Tolerant Model Predictive Control with Flight-Test

Results. Journal of Guidance, Control and Dynamics 0731-5090 33(2) (2010)



The Development of Perspective Displays for 
Highly Precise Tracking Tasks 

Alexander Efremov and Mikhail Tjaglik
*
 

Abstract. A generic technique is presented for optimization of the display-aircraft 

system. The technique includes mathematical modeling based on the modified 

Hess model and selection of pilot model parameters by minimization of the vari-

ance of predicted path angle error. The prediction time is selected through mini-

mization of variance of error characterizing the goal of the investigated piloting 

task. These tasks are refueling, terrain following and landing. The experiments  

fulfilled on a ground based simulator with Head up Display (HUD) demonstrated 

the tunnel image with preliminary selected sizes and projection of predicted path 

angle on a surface sliding in the tunnel and located on appropriately selected  

distance ahead. The results demonstrated that the developed technique allowed 

considerable improving accuracy in each piloting task. 

Symbols: 

e(t) - error: 

( ) ( ) ( )e t i t tγ γε ε= Δ = −  - error in single loop compensatory task; 

( ) ( ) ( )
i

e t H t H H t= Δ = −  - error in landing, terrain following task; 

( ) ( ) /
i

e t t H Lθ θε ε= Δ = −  - error in refueling task; 

( ),  ( )
i

i t H t  - input signals in different task; 

pr
L  - predicted distance; 

/n nα α= ∂ ∂ ; 

n  - normal acceleration; 

/
pr pr

T L V=  - prediction time; 

WZ Z W
α = ; 

/ 1/
W

Z Z W m= ∂ ∂ ⋅ ; 

W  - vertical component of perturbed  translation velocity of aircraft; 
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,  
sp sp

ξ ω  - damping ratio, frequency in short period motion; 

/ 2
pr pr

Tγ γ γ= +$  - predicted path angle; 

/
pr

H Lγε γ= +  ; 

/H Lθε θ= +  - aiming angle; 

H  - altitude; 

γ - flight path angle; 

L  - distance between probe and drogue, distance between pilot and surface 

were predictor is projected; 

,  Z HΔ Δ  - sizes of tunnel. 

1   Introduction 

Number of piloting tasks such as terrain following, refueling, spot landing (includ-

ing carrier landing are precise tracking tasks). All of them are characterized by the 

necessity to control the aircraft flight path. The aircraft dynamics has second and 

third order pole at the origin in these cases. It requires additional information 

(climb rate, pitch, yaw angles etc) which pilot uses to close additional feedbacks 

to ensure system stability and accuracy. To ease piloting process in some tasks 

(landing, terrain following) they use director indicator generating a director signal 

improving the dynamics of display-aircraft system. However, such director indica-

tors do not change the compensatory type of the task. Recently a number of  

researches [1,2] has been made to develop a new type of displays capable of  

generating 3D elements (like tunnels) and additional signals with information in-

dicating future position of aircraft. The results of investigations demonstrated that 

displays of this type allow improving accuracy considerably. Below is a generic 

approach towards the display design for some piloting tasks. 

2   Approach 

Three precise tracking piloting tasks: were considered landing, terrain following, 

refueling. When landing and terrain following the longitudinal control is charac-

terized by tracking of program trajectory Hi(t). When landing such trajectory is a 

glide path. In the case of terrain following it might by defined preliminary on the 

basis of required proximity to the terrain. Its definition has to take into account 

limits of accelerations, path angles, climb rate and minimum altitude. The pilot 

has to minimize error e(t) between Hi(t) and aircraft altitude H(t), 

( ) ( ) ( )
i

e t H H t H t= Δ = −                                                 (1) 

in both tasks. 

The transfer function of aircraft in these tasks 

)2()(

)(
222

spspsp

c

e sss

VnK

s

sH

ωωξδ

α

++
=                                        (2) 
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has the second order pole at the origin. It is well known that precise control in dy-

namics of this kind is very difficult. 

As far as refueling is concerned, the controlled element element dynamics is the 

angle (“aiming error”)  

L

tH
tt

)(
)()( += θεθ  

where L is a distance between the pilot and the drogue (basket) (Fig 1). When re-

fueling the pilot has to minimize the error e(t), where 

L

tH
tte i )(
)()( −=Δ= θθ εε         (3) 

And Hi(t) is the basket displacement.  

 

Fig. 1 Kinematics of refueling 

The transfer function 
)(

)(

s

s

eδ

εθ  of controlled element dynamics is the following 
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In case of short distance to the basket V/L>>1 this transfer function becomes  

close to  

)2(
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ε α
ϑ
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−
≅  

This transfer function is similar to (2). It means that the pilot compensation in this 

task has to be considerable too. The gain coefficient in this transfer function 

( LVZKc /α ) for short distance L is considerable too. For this reason the pilot 

changes the strategy to suppress the instability in pilot-aircraft system. The pilot 

starts adjusting the aircraft altitude rather than the angle θε  [3]. Such dynamics is 

not simple one, but it is characterized by a constant gain coefficient. 

Controlled element dynamics can be improved in a number of ways. Among 

them is employment of a flight control system capable of altering parameters of  
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denominator D(s) of aircraft transfer function 
)(

)(

sD

sN
Wc = . The other way is  

alteration of numerator N(s) of transfer function 
)(

)(

sD

sN
Wc =  for any considered pi-

loting task. It can be realized by the image of predicted path angle )(tprγ on HUD 

and its projection on the surface locating at a distance Lpr and sliding in front of 

the plane with the velocity corresponding to the aircraft velocity. The value of  

Lpr opt (or Tpr opt=Lpr opt/V) is defined through the simulation on workstation or 

mathematical modeling by calculation of 2 ( )
e pr

f Tσ =  and definition of its mini-

mum. The error e(t) is defined by (1) for landing and terrain following tasks or by 

(3) for refueling task. Efficiency of information on the future position of the air-

craft was verified through the fixed-based simulation, where a computer-generated 

visual system (CGVS) created an image close to the investigated piloting task. 

Moreover, CGVS also generated HUD images of a predictor and a tunnel. By vir-

tue of such tunnel pilot can see the aircraft position in the space and change his or 

her compensatory behavior to the preview type. The efficiency of such transfor-

mation has been shown in a number of studies [4]. 

3   Analysis of Prediction Distance Lpr on Pilot Aircraft System 

Variables 

To optimize  Lpr or corresponding prediction time (Tpr=Lpr/V) it is necessary to 

take into account its influence on the following task variables: controlled element 

dynamics Wc(s), transfer function Wc
*
 defining the relation between variable char-

acterizing the task performance (H(s) in landing and terrain following, and )(sθε  

in refueling) and controlled element dynamics output signal γε , input signal. 

They are defined below these variables and influence of Lpr on them for each  

investigated piloting task. To define controlled element dynamics it is necessary to 

know predicted path angle )(tprγ . The Fig. 2 shows that γγγ +=
2

)(
pr

pr

T
t $ , 

where Tpr=Lpr/V. 

   

Fig. 2 Definition of predicted path angle         Fig. 3 Projection of predicted path angle 

γ
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For all piloting tasks under consideration change of altitude influences on the 

location of projection of prediction path angle )(tprγ  on surface at distance Lpr 

(fig 3). It influences controlled element dynamics output prpr LH /+= γε γ . 

The block-diagram of the considered task (Fig 4) allows to obtain the transfer 

function of controlled element dynamics 
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Fig. 4 Pilot-aircraft system for γε angle control. 

In general the dynamics (5) with the constant Tpr (or Lpr) provides better flying 

qualities in comparison with the dynamics characterized by the variable parameter 

Lpr.(or Tpr). The parameter Lpr influences on the transfer function
*

cW . 

Below is the transfer function in landing and terrain following tasks: 

prpr

c
TssT

V

s

sH
W

/22

2

)(

)(
2

*

++
==

γε
     (6) 

In case of decrease of Tpr, equation (6) can be simplified as 
pr

c
Ts

V

s

sH
W

/1)(

)(*

+
=≅

γε
, 

which does not contain the first order pole at the origin. The increase of Tpr leads  

to increase of the delay of altitude response in relation to γε . 

For example, when T>>1 

)12/()(

)(*

+
≅=

sTs

V

s

sH
W

pr

c

θε
. 

Deterioration of harmonization between variables H(s) and )(sγε  can lead to  

deterioration of tracking accuracy H(t), in spite of improvement of tracking  
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accuracy γε . This disadvantage can be avoided by corresponding selection of pa-

rameter Tpr and additional information on current aircraft altitude position. The 

latter can be intensively used by a pilot, which means that he or she closes addi-

tional visual feedback loop. As an example of such information, 3-D corridor 

(tunnel) was generated on HUD during experiments carried out on a fixed based 

simulator. The sizes of such tunnel HΔ , ZΔ  allow the pilot to estimate current 

displacement relatively to the program trajectory. 

For refueling task the output signal is )(sθε  and 
*

cW  is the following  

prpr

c
TsTs

LVZsZs

s

s
W

/12/

/

)(

)(
2

2
*

++

−−
==

αα

γ

θ

ε

ε
                                    (7) 

For short distances to the basket and the high values Tpr equation (7) transforms to   

)12/(

/*

+

−
≅

pr

c
sTs

LVZ
W

α

. 

It seems that response θε  is characterized by the delay in comparison with γε  

in that case. The harmonization between )(sθε  and )(sγε  can be achieved by  

corresponding selection of parameter Tpr and demonstration of the tunnel on HUD 

with preliminary selected boundaries ZΔ  and HΔ . 

A projection of angle γε  on the surface at a distance Lpr in front of the pilot 

causes dependence of input signal i(t) from Lpr, prLHti /)( = . The increase of Tpr 

lessens variance of input signal perceived by pilot 
2

2
2

)( pr

H
i

VT

Δ=
σ

σ . 

A high Lpr  affects visual accuracy threshold. Therefore,  Tpr should be of opti-

mum value for which the variance of altitude error HΔ (1) (in landing or terrain 

following task) or error θεΔ  (3) (refueling task) is minimum. The procedure for 

its definition is considered below. 

4   Technique of Research 

The optimum value of Tpr is defined by mathematical modeling and experimental 

investigations. 

4.1   Mathematical Modeling 

Mathematical modeling has been carried out in the following steps: 

1. Modification of pilot model 

2. Determination of input signal 

3. Determination of optimal value Tpr 
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4.1.1   Modification of Pilot Model 

The structure of pilot model used in the research is shown on Fig. 5: 

 

 

 

 

 

 

 

 

Fig. 5 Modified Hess pilot model 
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1/sec) characterize the pilot’s adaptation to kinesthetic information and neuromus-

cular dynamics correspondingly. The selection of pilot variable parameters 

( α=LK , βα /=LT , KN, TN) was carried out by minimization of variance of er-

ror 2

eσ . Here e(t) is the error signal predicted by pilot (see Fig. 5). The procedure 

for such parametric optimization is presented in [3.7]. This model is a modifica-

tion of the well known Hess model [5]. The proposed modification allowed to ob-

tain a better agreement with the experimental results in low and high frequency 

ranges in comparison with the basic model. 

4.1.2   Input Signal 

An input signal in terrain following task is a program trajectory. It is a basket motion 

in refueling task and aircraft response on atmosphere turbulence in landing task. In 

the mathematical modeling a general form of spectral density spectral 
2222

)/( iii kS ωω +=  has been used. The iω  parameter is defined from the require-

ment of agreement of this spectral density to the real input signal spectral density 

corresponding to the investigated task. The gain coefficient k is selected from condi-

tion that variance of input signal located at distance Lpr was 22*2
)/( pri Lσσ = , where 

2*
iσ  variance of input signal. 
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4.1.3   Optimum Prediction Time 

The mathematical modeling of pilot-aircraft system corresponding to each piloting 

task was fulfilled for different values Tpr. For each of them it was necessary to define 

pilot model parameters (KL, TL, …) providing minimum 
2

γεσ Δ  (where according to 

Fig. 5 γγ εε Δ=−= )()()( ttite ), value of this minimum, variances 2
HΔσ  or 2

θεσ Δ  and 

their normalized variances 
2

max
22 / HHH ΔΔΔ = σσσ , 

2
max

22 /
θθθ εεε σσσ ΔΔΔ = , 

2
max

22 /
γγγ εεε σσσ ΔΔΔ = . Here 

2
maxHΔσ , 

2
maxθεσ Δ , 

2
maxeσ are maximum values of 

variances calculated for all Tpr.  As a result, dependence )(2
prTf=Δ γεσ  is obtained 

which demonstrated that an increase of prediction time (up to Tpr=1÷2 sec) leads to a 

decrease of variance of error 
2

γεσ Δ . Such result is common for all investigated pilot-

ing tasks. The result of calculation of 
2
HΔσ  for landing task on Fig. (6) shows that 

the optimum value Tpr is close to 0.7 sec.  

  

Fig. 6 Optimal prediction time for landing 

and terrain following tasks 

Fig. 7 Optimal Prediction time for re fuel-

ing task 

It was shown that influence of input signal bandwidth iω  on Tpr is insignifi-

cant. As for the refueling task the dependence is calculated as )(2
prTf=Δ θεσ  

which allowed obtaining optimum value Tpr. It can be seen (Fig. 7) that optimum 

value is Tpr = 0.4÷0.5 sec. The influence of input spectral density parameter 
i

ω  

does not influence practically on this value either. 

4.2   Experimental Investigations 

The results of mathematical modeling were verified by experimentally on computer 

and ground based simulator. The workstation simulations were fulfilled for situation 

when pilot carried out compensatory task with aircraft dynamics corresponding  

to the equation (5) with constant Tpr. Pilot task was the minimization of error 
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)()()( ttite γγ εε −=Δ= . Upon each experiment pilot and pilot-aircraft frequency re-

sponse characteristics and variances were defined. All of them were close to the 

same characteristics calculated in mathematical modeling. The typical results of 

workstation simulation (normalized variances )(/ 2
max

22
prTf== ΔΔΔ γγγ εεε σσσ  and 

)(/ 2
max

22
prHHH Tf== ΔΔΔ σσσ ) are shown on Fig. 8. 

 

Fig. 8a Experimental results of computer-

aided simulation modeling 

Fig. 8b Results of computer-aided simula-

tion 

These results substantiated the mathematical modeling that an increase of pre-

diction time Tpr leads to decrease of normalized variance 2

γεσ Δ  and optimum value 

of Tpr providing the minimum of variance 2
HΔσ  is close to Tpr opt=0.7÷0.8 sec. 

The efficiency of prediction information was checked through experiments on 

ground based simulator. This simulator has a computer generated visual system 

which demonstrates an image of outside world corresponding to each piloting 

task. Besides, a HUD image was projected on the screen of this visual system.  

The intention was to estimate: 

• pilot subjective Cooper-Harper rating 

• mean of error mx(ti) 

• mean square error σx(ti), 

where x is path variables ( H ,  Y , H$ ) calculated experimentally. 

For terrain following task two versions of HUD were investigated: 

• HUD with information shown on fig 9 

• HUD with the same image without the tunnel. 

The desired and accepted task performances were defined by a method developed 

in [6]. The task performances were defined as requirements to aircraft path posi-

tion to stay at least 87% and 70% correspondingly of total flight time inside the 

3D tunnel. 
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Fig. 9 Head up Display for terrain following task Fig. 10 Director indicator used 

for the landing task 

Totally 80 experiments were carried out.  Data reduction allowed to calculate 

the variance of altitude errors H(t)=H(ti)-Hi(ti), where Hi(t) is the input signal, in 

each moment ti: 

1
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iHσ ; N - number of experiments, ( )
H i
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error in moment ti. After that average mean square error for all flight was defined. 

∑
=

ΔΔ =
k

i

iHH ktM

1

/)(][ σσ ; where k is a total number of moments ti. 

During experiments the full six-degree of freedom aircraft mathematical model 

was simulated in a real time mode. 

Experimental investigations demonstrated that any considered HUD allowed 

carrying out the task very accurately (Fig. 11). Moreover, employment of HUD 

with images of predictor and tunnel allowed decreasing the mean square error of 

altitude up to 20% in comparison with cases when only image of tunnel was gen-

erated by HUD. 

  

Fig. 11 Results  of experiments (terrain fol-

lowing) 

Fig. 12 Results of experiments (landing) 
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Landings were fulfilled under the following conditions: 

• Instrumental landing with display shown on Fig 10. The pilot also used 

other indicators. A computer generated visual system gave pilot an image 

corresponding to the landing task. 

• HUD display with images of predictor with 3D tunnel and sliding surface 

at distance Lpr where the predictor and 3D tunnel were demonstrated up 

to H=25m. After that pilot carried out flare using the visual information. 

• HUD display demonstrated the same information during the approach 

and flare up to the touchdown. 

During the flare the tunnel transforms in curved tunnel according to the flare 

trajectory. The trajectory of flare was defined from requirement that initial 

(when H=25 m) and touchdown climb rates corresponds to the pre-defined 

values. 

 

Fig. 13 HUD used for landing                              Fig. 14 HUD for refueling  

Almost 90 landings were fulfilled in ground based simulator. For each of them 

the altitude and side position during approach, touchdown climb rate, touchdown 

point coordinates were recorded. The reduction of data demonstrated that additional 

information allowed decreasing the variability of touchdown point. Employment of 

HUD with prediction information up to H=25 m allowed decreasing  the normalized 

mean square error in longitudinal channel up to 23% and up to 52% for HUD with 

images of predictor and 3D tunnel up to touchdown. Additionally, the accuracy of 

landing in lateral channel increases up to 4 times. 

Besides, vertical rate at touchdown point decreases in two times. Employment 

of HUD display when approaching allowed decreasing altitude deviation in two 

times. 

Refueling task was investigated in two options: 

• without HUD display 

• with HUD shown on fig 14 

Totally about 70 experiments totally was carried out. The colors of the tunnel 

changed with the function of velocity of approach Va. Red color means the case 

with Va<0.8 m/sec, green color, 0.8≥ Va ≤1.2 m/sec, yellow color, Va>1.2 m/sec. 

These colors inform pilot about aircraft speed which allows pilot to control it. 
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With a display of this type it becomes possible to decrease the mean square error 

of point of contact 1.5 times and ensure green color of tunnel in all experiments. 

5   Conclusions 

The method of employment of future HUD is offered for some piloting tasks  

requiring high accuracy. The method is based on principles of the general pilot air-

craft system theory stated in [7]. The advanced versions of HUD allowed to im-

prove the accuracy of task fulfillment 1.5÷2.5 times and to enhance flight safety. 
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Abstract. This paper summarizes some of the joint research efforts of University of

Minnesota, University of Sannio, Computer and Automation Research Institute (SZ-

TAKI) and Budapest University of Technology and Economics (BME) to develop

an Unmanned Aerial System. The future aim of the research collaboration is to de-

velop and test advanced navigation, control and fault detection algorithms running

over an easily accessible, customizable platform in real flights. This collaboration

resulted in a flight research platform which can be easily configured with different

guidance, navigation and control algorithms including an easy way of code devel-

opment and testing. The paper focuses on the fine-tuning of the system components

implemented by SZTAKI and BME. The related work includes sensor calibration,
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DAQ Data Acquisition

EKF Extended Kalman Filter

GPS Global Positioning System

HIL Hardware-in-the-loop

IAS Indicated Airspeed

IMU Inertial Measurement Unit

PID Proportional Integral Derivative (control)

PPM Pulse Position Modulated (signal)

PWM Pulse Width Modulated (signal)

RC Radio Controlled

SIL Software-in-the-loop

SZTAKI Computer and Automation Research Institute, Hungarian Academy of Sciences

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UoM University of Minnesota, Department of Aerospace Engineering and Mechanics

UoS University of Sannio, Department of Engineering

a acceleration

h altitude

H magnetic vector

k time index

V vector of measured voltage values

V aircraft indicated airspeed

superscripts:

a acceleration related values

ω , ω0 angular rate related values

h, H altitude or magnetic vector related values respectively

V IAS related values

subscripts:

meas measured quantity

0 quantity related to zero output

1 Introduction

Recently, FedEX CEO F. Smith told the media that they would switch their fleet to

UAV’s as soon as possible (Ref. [1]). However, civil, low-cost UAV’s need seve-

ral pre-requisites to render them viable, cost effective and regulated alternatives to

existing resources. One key aspect of these requirements is to have reliable flight

control systems onboard. It means that advanced and fault tolerant algorithms must

be used to guarantee the safety of UAV missions.

A joint research project was initiated between UoM, UoS, SZTAKI and BME to

develop a UAS that has easily accessible and customizable development environ-

ment which makes possible significantly shorter development cycles (see Ref. [7]).

The long-term aim of this collaboration is to develop and flight test advanced, re-

liable and fault tolerant algorithms onboard the UAV. The collaboration originally

started between UoM and UoS. The aim was to create an open-source project with

COTS hardware components. SZTAKI and BME later joined in and their task was

to test the developed UAS including all its components. This means exchange of
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Fig. 1 UAS Ultrastick aircaft

documentation, component lists and software codes. This is a vital task to test and

prove whether the available open-source documentation is complete or not. During

this work, continuous communication and bug information exchange was conducted

and several improvements were applied from which the main results are summarized

here.

The outline of the paper is as follows: Sec. 2 introduces the open-source UAS,

Sec. 3 summarizes the work related to the sensor unit, Sec. 4 presents the devel-

opments in the autopilot code, Sec. 5 and 6 summarize the flight test results. And

Sec. 7 draws conclusions.

2 The Open-Source UAS with COTS Components

The selected aircraft is the E-flite Ultrastick 25e. It is a small RC airplane but has

enough space in the fuselage to integrate all the required hardware components (see

Fig. 1). The aircraft has 1.27 m wingspan and about 1 m fuselage length with 2.1 kg

take-off weight (including all additional hardware).

The general architecture that is the onboard avionics together with the ground

components is shown in Fig. 2. Besides the conventional RC components, the on-

board system consists of the MPC555 microcomputer, the µNAV sensor, a fail-

safe multiplexer board and a wireless communication modem (see Ref. [8]). The

main steps of the code development for the control system are given in Fig. 3. The

software-in-the-loop (SIL) test environment shown in the figure was fully imple-

mented in Matlab. While the hardware-in-the-loop (processor-in-loop) environment

uses a nonlinear Matlab simulation model of the aircraft that is connected to a hard-

ware architecture similar to the one shown in Fig. 2. In case of HIL, the aircraft and
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Fig. 2 General architecture for autonomous flight

Fig. 3 UAV control system code development steps

µNAV sensor are replaced by their simulation models; with all the other compo-

nents (i. e., microcontroller, multiplexer board, RC receiver) being identical to those

appearing in the real system.

After introducing the main system components and explaining the steps of con-

trol code development, we focus our attention to the various modifications during

system testing.
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3 Modifications Related to µNAV Sensor

The first, and most important component of the system is the IMU. The Crossbow

µNAV sensor is used in the UAS. It can measure three axis accelerations, angu-

lar rates, magnetic values, static and pitot pressures, temperature and GPS signals.

It can convert RC PPM signal into the separate PWM signals. It is a compact,

lightweight and cost effective device with variable output frequency and packet

types (see Ref. [5]).

3.1 Experiences with Software and Its Modifications

Crossbow provides a software – called Micro-View – with which the sensor can

be calibrated and the sensor data can be collected. Experience with this software

indicates that it is unreliable as it loses connection with the sensor device if a broken

data packet arrives, furthermore it does not always set the sensor into the desired

mode. For this reason a handling program was written using LabWindows CVI with

similar but extended capabilities, particularly with respect to packet error tolerance.

The calibration capability provided by Micro-View is not satisfactory as it

considers only the diagonal elements of the calibration matrices for rate sensors,

accelerometers and magnetometers; furthermore it does not take temperature de-

pendence into consideration. However, the off-diagonal elements of these matrices

should be taken into consideration, and it has turned out that the acceleration and rate

sensors have significant temperature dependence. 0.85 g acceleration was measured

at 5◦C instead of 1.0g (measured at 25◦C). This means (0.075m/s2)/K temperature

dependence, therefore temperature calibration is a vital task.

µNAV can send out either sensor voltage data or scaled data. If one makes a

custom calibration procedure, then it is advisable to use the former data format. But

then neither PWM, nor GPS signals are sent out in the data packet (see Ref. [5]).

As a consequence, the scaled mode packet should be modified to include sensor

voltages (instead of scaled values). Two other modifications were also required.

1. one of the unused timers of the microcontroller on µNAV was used for checking

whether the data frequency is correct or not.

2. a packet counter was set to make the detection of packet losses possible.

3.2 Sensor Calibration and Data Acquisition

The next step of the development was sensor calibration. The calibration formulae

are as follows. For the explanation of notations see abbreviations and notations.

a = Ka (Va
meas −Va

0) (1a)

Vω
0 = V

ω0
0 + Kω0a (1b)

ω = Kω (Vω
meas −Vω

0 ) (1c)

H = KH
(

VH
meas −VH

0

)

(1d)
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hk+1 = hk + Kh
(

Vh
meas(k + 1)−Vh

meas(k)
)

(1e)

Vk+1 =
√

V 2
k + KV (VV

meas(k + 1)−VV
meas(k)) (1f)

Equation 1 shows that bias vector and scaling matrices were calculated for the ac-

celeration, angular rate and magnetic vector, while for the static and pitot pressure

a scaling factor and the formulae were derived. The unknown parameters were de-

termined using least-squares technique. As it turned out, higher order terms were

not required as the errors of calibrated quantities were sufficiently small. The maxi-

mum/mean absolute errors are summarized in Table 1.

Table 1 Maximum and mean absolute fit errors

quantity max error mean error

acceleration 4% 1.5%

angular rate 3% 0.8%

magnetic data 5% 1%

altitude 27% 2.6%

IAS 100% 30.3%

As can be seen from Table 1 only the IAS errors are serious, but it is well known

that its measurement with pitot tube is inaccurate. Therefore a better fit could not be

achieved.

The bias vector of the angular rate (in Eq. 1b) was calculated from the accel-

eration with bias and scaling in a manner proposed by Ref. [4]. The temperature

dependent parts of the formulae are shown in Eq. 2. It soon became evident that the

magnetic and pressure data did not need temperature calibration.

Va
0 = Va

01tV + Va
02; Ka = Ka

1 tV + Ka
2 (2a)

V
ω0
0 = V

ω0
01 tV + V

ω0
02 ; Kω0 = K

ω0
1 tV + K

ω0
2 (2b)

Kω = Kω
1 tV + Kω

2 (2c)

Here, tV is the output voltage of temperature sensor. The calibration formulae in

Eq. 2 relate to the linear fitting on the elements of the calibration matrices and vec-

tors in Eq. 1a–1d. The quality of temperature calibration can be tested comparing

the measured vertical accelerations when the aircraft is on the ground. In this case,

the pitch angle of aircraft is about 10◦ so, the vertical acceleration should be about

cos(10◦) ·1g = 0.9848g. In accelerometer calibration the following sign convention

was used: +1 g is output if gravity acts along the sensor’s axis. The measured and

calibrated az accelerations from flight tests - in May 2009 (with 20−25◦C air tem-

perature), October 2009 (with 15−20◦C air temperature) and December 2009 (with

5− 10◦C air temperature) in Budapest Hungary - are plotted in Fig. 4. The mini-

mum and maximum differences from the required value were -0.57% and 0.73%,
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Fig. 4 Temperature-calibrated vertical acceleration in different weather conditions

respectively. It means that the calibrated measurement was carried out with very

high accuracy.

Sensor data could have been collected with the ground station software, but the

following two problems arose:

1. The data speed of the uplink thread was too low. After some consideration, it was

set to 10Hz. With this setup, the data speed on the ground was about 8Hz.

2. The unreliability of the wireless connection caused data losses (and/or erroneous

data packets).

For the aforementioned two problems, the system identification could not be per-

formed from ground station data. However, system identification can be carried out

based on the data provided onboard by µNAV at 50Hz, as this frequency is large

enough to cover all the important modes of a small UAV.

For this purpose an SD card-based data acquisition (DAQ) device was developed

by SZTAKI. The developed DAQ device is shown in Fig. 5. It collects and stores

data on a standard SD card in text files. These files can be simply read and copied

Fig. 5 The SD card-based

data acquisition device (de-

veloped by SZTAKI)
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by any operating system. A separate program was written to convert the content of

these files into µNAV packet format.

4 Control Code Developments

After completing sensor calibration and DAQ device construction as development

tasks, flight tests were carried out with the Ultrastick UAV. Firstly, the system iden-

tification tests were performed. Then, tests with different levels of autonomy were

flown.

During these tests the attitude estimation extended Kalman filter (EKF) was

somewhat inaccurate. It was because it considered the measured acceleration vector

as the instantaneous gravity vector thereby neglecting the inertial effects. Another

problem was the proper handling of global variables in the different mutually ex-

clusive threads as this led to certain instabilities in the control. For more details on

thread handling see Ref. [2].

To overcome the aforementioned problems, a new and more accurate multi-mode

EKF was developed and tested. It uses not only acceleration and magnetic vectors,

but relies on GPS speed measurements as well. This development is presented in

detail in Ref. [3].

The problem with mutual exclusions (mutex’s) to handle global variables was

solved by associating a global variable with one thread only, and using its local

copies in every other thread. This way, mutex’s are used only for a short time (to

ensure copying the global values into the locals) thereby minimizing the locked

times of the threads.

At the final stage of the development, flight tests with the modified MPC555

code were conducted. The developed control code has two levels: the low level

implements the roll and pitch angle tracking PID controllers, while the high level

control code is responsible for altitude and IAS hold and waypoint tracking control

(PI and other controllers). The waypoint tracking solution is described in Ref. [6].

For more details see Ref. [8].

5 Low Level Control: Tracking of Roll and Pitch Doublet

References

The low level control tracks roll and/or pitch Euler angle references with PID loops.

It enables straight and level flight or turning of the aircraft. At first, the tracking of

roll then the tracking of pitch doublets was tested by switching the aircraft between

tracking modes. SIL, HIL and real flight tests were carried out following the in-

dividual development steps. Real flight results are plotted in Figs. 6 and 7. Tests

were done on 17th June 2010 with 20-25◦C air temperature and moderate wind.

The tracking error for roll angle was about 2.5–7.5%, while for pitch angle it was

about 3.5–6.5%
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6 High Level Control: Altitude and IAS Hold, Waypoint

Tracking

After testing the low level controllers, we turned our attention to the higher level

controllers. Four different autopilot versions were tested in SIL, HIL and real flight.

The first one saves the instantaneous IAS and altitude at the time of switching and

tracks them while flying straight and level (applying PI controllers). The second

autopilot version tracks an IAS step function while holding the altitude (saved at

the time of switching) and flying circles with constant −30◦ roll angle. The third

one tracks an altitude step function while holding the IAS (saved at the time of

switching) and flying circles with constant−30◦ roll angle. The fourth one is the full

version of waypoint tracking autopilot. This latter flies between GPS coordinates

while holds the altitude and IAS.
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Fig. 6 Tracking of a roll doublet reference signal in real flight conditions

The results were acceptable for all the autopilot versions. Tests were done on

29th June 2010. with 25-30◦C air temperature and high crosswind. The tracking

results for IAS and altitude references can be seen in Fig. 8. After some transient,

the IAS reference was held with ±2 m/s,±9%, while the altitude with +10m/−
15 m,+8%/−12% maximum error.

The tracking of waypoints can be seen in Fig. 9. The crosses show the part of

flight path when the aircraft was flown by the autopilot. The small circles with the

crosses show the waypoints to be tracked, while the large circles show the tolerances

(20 m) around the waypoints. The figure shows that the waypoints were tracked

with good accuracy (7m and 0.97m errors) so, the crosswind was well compensated.

Unfortunately, the flight had to be ended earlier due to the diminished battery power.

The overall experiences show that low level controllers work well, while the high

level controllers need to be tuned further to decrease the tracking errors. The IAS
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Fig. 7 Tracking of a pitch doublet reference signal in real flight conditions

tracking part (with elevator) and altitude tracking part (with throttle) has a tendency

to work against each other. It is because they have very different bandwidths (the

IAS tracking part is faster then the altitude tracking one) that should be tuned and

harmonized.

We experienced some problems concerning the reception of GPS signals. The an-

tenna provided with µNAV frequently loses reception which makes waypoint track-

ing impossible. Therefore, another better antenna must be purchased to improve

flight performance.
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Fig. 8 Tracking of IAS and altitude references in real flight conditions
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Fig. 9 Tracking of a route with four corner points in real flight conditions

7 Conclusions

This paper reports on some of the joint research efforts of UoM, UoS, SZTAKI and

BME. The goal of this research was to create a UAS from COTS components with

development tools which enable to rapidly synthesize, implement, analyze and vali-

date a candidate controller design using iterative development cycles. Another goal

was to use open-source philosophy. This paper described the tests performed with

the developed UAS. This included building and testing the complete system starting

from the documentation, component list and software codes. Several HIL tests and

flights were performed. The corresponding data were plotted and evaluated.

As a result, the software codes related to µNAV sensor were modified to achieve

better functionality. The sensor unit was calibrated including temperature depen-

dence. A suitable EKF was developed for attitude estimation to improve global con-

troller performance. Finally, the thread handling of the multithreaded autopilot code

was corrected and optimized to achieve a better performance.

Flight test results show the success of the project. A UAS was developed and it

serves as a platform to implement and test different autopilot codes. The participants

gained hands on experience with the platform.

The future plans include system identification, implementation and testing of ad-

vanced tracking and fault detection and isolation control algorithms. Presently, fault

detection and isolation is a hot topic in aerospace research and it is expected to

remain so, in the coming years. The developed UAS can be used for developing,

implementing and testing such control solutions.
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Visibility Cues for Communication Aware
Guidance in Cluttered Environments

H. Claus Christmann and Eric N. Johnson

Abstract. This paper presents the usage of visibility based guidance cues in order

to find waypoints useful for maintaining communication in a multi UAV (Uninhab-

ited Aerial Vehicle), single operator system. Based upon the overlay of visibility

graphs (for radio communication) and Voronoi diagrams (for maximum clearance

motion paths), the paper presents simulations of three staged methods, allowing the

computation of waypoints suitable for establishing a potential multi-hop connec-

tion between an operator and a primary UAV in an urban or otherwise cluttered

environment. The methods present generic solutions for 2D planes, ensuring appli-

cability for indoor, outdoor, and other structured environments through a potential

interconnection of several non-coplanar 2D planes. The presented methods increase

in computational complexity as they are capable of handling more complex sce-

narios. However, the presented methods are overall still deemed computationally

acceptable and present themselves as good candidates for onboard implementation

on vehicles with limited computational power.

1 Introduction and Motivation

Tactical Uninhabited Aerial Systems (UAS) often utilize a single Uninhabited Aerial

Vehicle (UAV) tele-operated by a single control station operator. Though higher

level control, i.e. the use of preprogrammed waypoints or whole trajectories, is

sometimes possible, the remote operators often pilot the UAV directly via a first-

person video feed, providing them with immediate sensor data and allowing them

to perform tasks such as obstacle detection and classification, collision avoid-

ance, and path planning.[1] These first-person video streams in combination with
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stability augmentation systems for remote piloting allow for increased ease of opera-

tion, high situational awareness of the operator, and direct availability of the primary

sensor data, the video feed. All that is achievable with relatively modest training re-

quirements - including the control station operation and the actual remote-piloting.

However, this single-operator-single-vehicle setup limits the operational range

of such a UAS to essentially the range of the utilized communication link. Fur-

thermore, given, for example, the height of urban high rise buildings, position-

ing UAVs “above and behind” (as required by Line-Of-Sight (LOS) constraints)

might not always allow suitable sensor access to the back side of Radio Fre-

quency (RF) obstructing objects. Using a relay can mitigate those limits. More com-

plex UAS, e.g. current High-Altitde-Long-Endurance (HALE) or Medium-Altitude-

Long-Endurance (MALE) systems, can utilize indirect communication via commu-

nication relay nodes to overcome this LOS limit, most often at a cost of link delay

and the addition of an operator dedicated to payload related activities.

For tactical scale UAS the use of satellites as relays is prohibitive, not only due

to the introduction of high latency, but foremost for infeasibility of the implementa-

tion of related required avionics. Relying on potentially available HALE or MALE

systems to act as relays is also challenging. Not only would the local tactical UAS

operator have to coordinate with a different UAS to negotiate operational areas and

coverage, but also would the link to the relay HALE or MALE UAV have to be

robust to shadowing and/or multi-path effects in cluttered urban environments.

Instead of external pseudolites, other local UAVs from within the same tactical

UAS could be used as communication relay nodes, effectively establishing a local

multi-hop network within the UAS.

However, if operated under the same principle of remote-piloting, introducing

additional UAVs as relays comes at the cost of drastically increased workload. Each

additional relay UAV would require a similar amount of work as the primary UAV,

mainly work related to collision avoidance and path planning. For those secondary

UAVs, path planning is furthermore complicated by the dual task of getting from

one location to another as well as maintaining LOS to the primary UAV and to the

GCS or other intermediaries, respectively.

This work proposes visibility based cues that could allow secondary UAVs to

conduct these relay tasks without major operator intervention, combining opera-

tional advantages of smaller scale tactical UAS with the benefits of swarm-enabling,

higher-level automation in the background.

1.1 Limiting the Operational Zone of the Secondary UAVs

Starting from the HALE and MALE analogy, an initial replication of such a setup

seems suitable. The system would deploy a single supportive UAV as a relay, this

UAV would position itself “high and behind” any potential obstacle, Fig. 1(a), and

as such establish a dual-hop link. An extension to this would be the usage of two

supportive UAVs, positioned high enough directly above the control station and the

primary UAV, respectively, to establish a three-hop link, Fig. 1(b). These setups
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(a) Placing a single

supportive UAV high

and behind obstacles

in cases of few obsta-

cles.

(b) Supportive UAVs

high and directly over

other nodes helps in

denser environments.

(c) The vertical ap-

proach could fail if

going high is not an

option for some rea-

son.

(d) Utilizing a hori-

zontal setup could en-

able otherwise infea-

sible solutions.

Fig. 1 Open environments pose no special problems as LOS is essentially guaranteed. In

the presence of RF obstacles, using a vertical 2D plane to create multi-hop links between

the control station and the primary UAV provides for conceptually identical solutions. If the

scenario does not allow for such a positioning, using a horizontal 2D plane can expand the

solution space and enable previously not possible setups.

could conceptually be called vertical, as the task involves the placement of support-

ive UAVs in an essentially vertical plane determined by the position of the control

station, the primary UAV, and the “up”-direction.

However, “going up” might not always be an option. In certain scenarios the

airspace could be closed above a given altitude or there is no LOS between a pri-

mary UAV and the space above, potentially due to the Area of Interest (AoI) being

in a tunnel, under a large bridge, indoors, or under ground, Fig. 1(c). To include

such scenarios, the solution would have to include the horizontal component of the

environment, Fig. 1(d). However, as the problem is still a 2D problem, the proposed

generic processes can also solve this setup.

Fig. 2 In complex struc-

tured 3D environments, the

generality of the solution

for the 2D plane case allows

for an intersecting of planes

to capture the environment.

In the displayed example

(stylizing a staircase), one

horizontal plane captures

each floor (B,C,D), a single

vertical plane in the stair-

case joins them together

(A). Requiring a UAV to be

located at each plane inter-

section allows inter-plane

communication based on the

processes presented for the

generic 2D planar case.
 

!

"

#
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In both scenarios, the vertical as well as the horizontal one, a large part of the

problem can be captured in a, respectively, vertical or horizontal 2D plane. As a lot

of human created environments tend to be “2.5D” - two dimensional complexes or

mazes extruded in the “up”-direction and then stacked on top of each other - the

operational zone of the supportive UAVs has been chosen to be limited to spaces

representable1 by a 2D plane. This provides a generic solution for the vertical and

the horizontal setup and allows an extension into structured 3D environments by

dissecting the environment into a set of mutually intersecting 2D planes, Fig. 2.

1.2 Urban First-Responder Scenario

To further motivate the application, an urban first-responder scenario is proposed.2

In this scenario, urban first-responders are assumed to have access to a tactical UAS

to support their mission. The first-responders would be accompanied by a UAS op-

erator that manages the UAS, gathers mission relevant information through it, and

distributes the gathered data to the affected members of the team.

Fig. 3 An urban first-

responder scenario: the

UAS operator is tasked with

an reconnaissance type mis-

sion on the target building

(white border), i.e. a fire on

the 13th floor. Relevant ob-

stacles are also highlighted

(black borders). (Aerial

Image: Google)

In the scenario a designated primary UAV would be under complete operator

control at all times, providing the before mentioned benefits. The (additional) sec-

ondary UAVs (acting as relay stations) would be fully autonomous. The operational

zone of the secondary UAVs would be a horizontal 2D-plane at a predefined alti-

tude, assuming that the UAVs can not go high enough to clear the buildings. This

also supports the system’s predictability for the operator, reducing operator work-

load by eliminating questions like “What is it doing?” and “Why is it doing that?”

In Fig. 3 a possible control station screen is presented. The mission target is high-

lighted and has a white border, physical obstacles protruding the operational zone

are also highlighted and have a black border. The task at hand would be to gather

visual information from all sides of the target area of interest, in this case the white

outlined target building.

1 In order to be allowable, the utilized projection has to maintain the visibility property of

the mapped points, i.e. a simple top-down view is only permissible in the absence of larger

hills, etc.
2 For more details on the scenario and the motivation see [2].
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The scenario assumes a priori availability of a map as this is required for the

proposed processes. Sec. 2.1 elaborates how this fits into the overall operational

scenario.

2 Motion Map

Motion planning is intricately connected to the map that is used and there is exten-

sive research on the topics of map generation as well as motion planning with urban

environments being a focus area not only since the DARPA Urban Challenge. In

his dissertation [3], Wooden comments on König and Likhachev [4] by stating that

“optimal planning is outweighed by the need for a “good” plan now.”

Looking for a “good plan now”, ease of computation is a major driver in choosing

methods and algorithms and, as mentioned in Sec. 1.1, limiting the operational area

from a full 3D environment to a (vertical or horizontal) 2D plane is a big benefactor.

Also, as the operational envelope of the (tele-operated) primary UAV is not at all

affected through this constraint, the applicability of the proposed methods to urban,

indoor, or otherwise structured environments is maintained, particularly if modeling

techniques as outlined in Fig. 2 are utilized.

Limiting other driving requirements to the most fundamental one, collision free

motion, generalized Voronoi diagrams present themselves as an immediate candi-

date to cover the motion aspect in 2D scenarios.

Fig. 4 Voronoi maximum

clearance paths through the

environment. The graph

has been stripped of leaf

nodes, resulting in a purely

cyclic graph that segments

the environment in one

connected cell per obstacle.

No dead ends allow for

easier usage by non-hover

capable aircraft, such as

fixed wing Micro-UAVs.

Given a free/occupied classification of the environment, e.g. Fig. 3, a Voronoi di-

agram providing maximum clearance paths through this environment can be easily

computed. Held’s VRONI [5] provides a computational efficient algorithm to gen-

erate Voronoi paths through polygonal environments and the authors believe this

algorithm to be suitable for UAV onboard implementation and use.

In order to generate a basic map of permitted paths for the supportive UAVs,

the Voronoi graph is stripped of leaf nodes, leaving a dead end free completely

cyclic graph, Fig. 4, of presumably collision free paths. The graph also segments

the environment into regions associated with each motion obstacle. The borders of

the cell encloseing the AoI will later be called (Voronoi) perimeter.
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2.1 A Priori Data

The proposed processes conceptually fit into the guidance category, leaving nav-

igation (and the related mapping), and control to other systems. As a result from

that stems the requirement for a priori availability of a map of the environment, i.e.

a free/occupied classification. For first-responders in metro areas, these maps are

assumed to be made available or, if not, created by the operator during ingress.3

Furthermore, the processes assume the availability of onboard collision avoidance

mechanisms which could report a mismatch between the a priori given map and the

sensed environment and trigger a conflict resolution procedure to synchronize the

map with the sensor information and react appropriately.

As such, the underlying assumption is that the navigation and related mapping

problem has been solved, either conventionally through a GPS corrected INS solu-

tion or, for example, through a SLAM based approach as in [6].

3 Guidance Cues

Assuming that the supportive UAVs are fully autonomous, the scenario poses a guid-

ance problem: where to send the supportive UAVs to and how to get them there. The

guidance task is to propose waypoints which are beneficial for the establishment of

a Mobile Ad-hoc NETwork (MANET) in a cluttered environment.

Several researchers have presented results on how to form and maintain MANETs

with UAVs (e.g. [7, 8, 9]), though one of the basic assumptions in the presented

research is a free space assumption under which the establishment of a link between

two nodes depends mainly on the distance of the nodes.4

Starting from an identical initial task - getting the primary UAV on the far side of

a building - three methods to obtain guidance cues for where to position secondary

UAVs are proposed.

Without any relay nodes and the assumption that the control station operator is

being stationary during an active use of the primary UAV, the operational range of

the primary UAV is limited to an area that has a direct LOS to the control station

and is within range of the communication equipment used. Fig. 5 shows this area

for an arbitrary position in the environment introduced above.

In order to complete the reconnaissance task given through the urban first-

responder scenario, the operator at some point has to position the primary UAV on

the far side of the target building in order to gather detailed data. Under the assump-

tions of this work, a conventional tactical UAS would be incapable of achieving this

3 Given readily available geo-referenced aerial images, the operator could use a familiarity

with the area to quickly “click together” a polygonal 2D free/occupied classification of

the presumed operational area. Bounds on how close to approach these obstacles could be

made conservative.
4 In [10] the authors have proposed the usage of UAS reference scenarios to evaluate the

performance of MANET protocols in a free-space situation.
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Fig. 5 Given a position of

the control station operator

(circle in the middle of the

bottom half) the single-hop

operational area is limited

by range and LOS for the

given position, represented

by the lightly shaded area.

Not all of the mission tar-

get’s faces (curved building

in the middle of the top half,

compare Fig. 3) are visible.

as the communication between UAV and operator would be interrupted when the

primary UAV leaves the direct LOS area of the GCS operator (Fig. 5).

3.1 Dual-Hop Scenario

The first proposed method to obtain cues is based on intersecting visibility polygons.

Using Obermeyer’s VisiLibity ([11, 12]), the visibility polygons for the current po-

sition of the GCS and the intended position of the primary UAV are computed based

upon the environment data also used for the computation of the Voronoi paths.

Fig. 6 The process to find-

ing visibility cues for a dual-

hop scenario. The Voronoi

diagram and the visibility

related computations are in-

dependent up to the last step

of the process. Guards is a

general term for the seeing

entities in VisiLibity, here

they represent the (support-

ive) UAVs.

Intersecting these two polygons and the Voronoi paths produces possible way-

points which are reachable via translations on the Voronoi paths and also fulfill the

requirement to have a direct LOS to the primary UAV as well as the GCS. Fig. 7(a)

shows the result of the process outlined in Fig. 6. If applicable, this method only

requires one supportive UAV in addition to the tele-operate primary UAV.

3.2 Perimeter Scenario

There are cases in which the dual-hop process proposed in Sec. 3.1 either completely

fails, i.e. there is no intersection of the visibility polygons and the Voronoi paths, or
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(a) Outcome of the process: waypoints on the

Voronoi paths inside the intersection of the

GCS visibility polygons (shaded blue) and

the primary UAV’s visibility polygon (shaded

green) could be used as guidance cues.

(b) A feasible solution that provides very lit-

tle robustness to motion of the GCS. Indica-

tors are the slender shape of the intersection

and the distance of the GCS to the edges of a

secondary UAV’s visibility polygon (shaded

cyan).

Fig. 7 Graphical representation of the dual-hop process results. The outcome of the process

is not guaranteed to be usable. Even if the intersection of the visibility polygons and the

Voronoi paths are non-empty, the solution might not be robust to movements of either the

GCS or the primary UAV.

the resulting cues are not very robust,5 e.g. as shown in Fig. 7(b). Adapting the

dual-hop process (Sec. 3.1) for a larger hop count (i.e. several supportive UAVs) as

a main approach to counteract these disadvantages results in a computational load

that might not be justifiable as the underlying method seems best suited for single-

relay scenarios.

Using the AoI Voronoi perimeter, i.e. the edges of the Voronoi graph that form

the segment containing the AoI (see Sec. 2), allows for the computation of a solution

that is essentially independent of the positions of the GCS or the primary UAV and

provides conceptually a different approach, presumably better suited for multiple

relays.

Fig. 8 The process to find-

ing visibility cues for a

perimeter scenario. The

edges of the Voronoi di-

agram that also form the

edges of the cell containing

the mission target form the

AoI perimeter.

5 For computation of visibility robustness see, for example, [13].
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In the process outlined in Fig. 8, the problem of finding cues is translated into the

well known “Art Gallery Problem”: find the minimum number of guards necessary

to observe all walls of an art gallery.

In the adapted problem, the faces of the target building (the AoI) have to be

completely observed and the supportice UAVs (the “guards”) can only be located

on the Voronoi paths forming the edges of the cell containing the AoI. Additionally,

the supportive UAVs, the GCS, and the primary UAV have to be connected in the

visibility graph.

Fig. 9 Graphical repre-

sentation of the perimeter

process results: four guards

(red outlined dots) are posi-

tioned on the AoI Voronoi

perimeter. The guards are

connected in the visibility

graph and their combined

visibility polygon is shown

(red outline). As long as

the GCS (blue dot) and the

primary UAV (green dot)

do not leave this polygon,

connectedness is ensured.

Fig. 9 shows a result of this process. As long as the GCS and the primary UAV do

not leave the combined visibility area of the guards, it is ensured that there always

exists a multi-hop connection between the GCS and the primary UAV, using the

(stationary) guards as relays.

3.3 Dynamic Visibility

The perimeter process provides cues for a static placement of secondary UAVs for

the duration of a mission. However, the perimeter process might also lead to un-

usable cues, whether due to a limited number of secondary UAVs or due to other

constraints, e.g. a resulting congregation of secondary UAVs that exceeds a certain

space-density and is hence deemed unsafe. As a next level, a process utilizing the

fact that initially only two nodes in the scenario are actually moving could be used

to reduce the computational load during a mission, potentially also making use of

the a priori availability of a map. Fig. 10 outlines this process.

As supportive UAVs are limited to positions on the Voronoi paths, the visibility of

these potential positions can be precomputed to save computational time during the

mission. As the Voronoi paths essentially are a continuum of possible waypoints, a

smart sampling has to be developed to reduce the computational effort while keep-

ing a higher resolution where necessary. The edges of the Voronoi path could, for

example, be sampled at an increased distance between sample points as the overall
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Fig. 10 The process to finding visibility cues for a dynamic scenario. Instead of recomputing

the complete visibility graph of the complete environment, the visibility of select points on the

Voronoi paths are precomputed (left half of the figure) and later expanded with the visibility

information of the two moving nodes, the GCS and the primary UAV. This split in a static/pre-

computed part and a dynamic/online-computed part fosters onboard realizability.

Fig. 11 Using the differ-

entiation of static versus

dynamic nodes when com-

puting the visibility speeds

up the computation. How-

ever, the computational load

is still high and the results

rather complex. Shown are

some nodes of the static

core and their respective

visibility (red), as well as

the visibility of the GCS

(blue) and the primary UAV

(green).

distance of the edge to the AoI increases. This would lead to the highest waypoint

line-density on the AoI perimeter edges and to lower densities towards the outer

areas of the environment.

The result of this process is not inherently geometrical and hence rather hard to

visualize. Fig. 11 shows some of the possible paths given by the adjacency matrix of

the undirected visibility graph. The process takes the precomputed visibility static

adjacency matrix S ∈ R
N×N of the sampled Voronoi paths and extends it with the

dynamic adjacency matrix D ∈ R
N×2 of nodes representing the GCS and the pri-

mary UAV with respect to the the static part. Hence, instead of recomputing the

complete visibility graph (with a complexity of O((N +2)3)), the process computes

the visibility polygons6 of the two dynamic nodes (GCS and primary UAV) and

6 In a staged approach of trying the proposed processes in the presented order, these can be

reused from the dual-hop process.
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checks which of the N sampled points of the Voronoi paths are inside of them. This

gives the visibility of the dynamic and the precomputed nodes and the complete

adjacency matrix A ∈ R
(N+2)×(N+2) can be constructed as A =

[

S D

DT apUAV 0

0 aGCS

]

,

where S ∈ R
N×N is symmetric and D ∈ R

N×2.

Any preferred graph algorithm can be used to find paths from the GCS to the

primary UAV in the expanded visibility matrix. In Fig. 11 a subset of the complete

environment is shown. The potential positions of supportive UAVs are indicated

by white circles. The corresponding visibility graph is plotted in red. This would

be (part of) the static core. Dynamically computed would be the visibility of the

control station (blue) and the primary UAV (green). As the visibility polygon for

both has already been computed in an earlier step, the computation of the actual

visibility is reduced to a checking which positions of the static core would be inside

this polygon.

4 Conclusions and Remarks

The proposed methods to obtain guidance cues for communication aware UAVs in a

cluttered environment are aimed at solving the problem of where to send supportive

UAVs to establish a multi-hop communication network between a GCS and a pri-

mary UAV. Feasibility of the methods has been tested in simulation for non-moving

vehicles, a deployment simulation or actual flight test have not yet been conducted.

The dual-hop process presented in Sec. 3.1 is computationally easy and a very

good candidate for onboard implementation. The perimeter process presented in

Sec. 3.2 is computationally much more complex, however, as the results are valid

for the complete mission (assuming the AoI stays identical) it could be performed

a priori. The dynamic approach outlined in Sec. 3.3 presents a method to deal with

a worst case scenario by dividing potential nodes in two sets, pre-computable static

nodes and moving dynamic ones. As this process would only be reached if the other

presented processes fail, previously computed data can be reused to minimize the

computational impact.

Although the dynamic process seems to be implementable onboard (from a com-

putational perspective), this process also poses the most challenges in transforming

the cues into actually selected target locations for secondary UAVs. As the result of

the process is just an adjacency matrix (where shortest path graph algorithms can

give cues for multi-hop waypoints), additional metrics have to be found or defined

in order to rank the set of shortest (hop) paths between primary UAV and the GCS,

assuming that fewer supportive UAVs are preferable.

The proposed methods however do not yet deal with some of the immediately

imminent challenges: as the primary UAV moves unpredictably for the automation

(as it is tele-operated), the automation has to anticipate its motion and pre-plan for

all possibilities. This might lead to conflicting requirements for the positioning of

the secondary UAV(s) when the guidance has to sort out where to send them. Future

work will have to look into the challenges resulting therefrom.
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Though experimentation with realistic urban scenarios seems to indicate that the

dual-hop process most often leads to usable results (where the use of some notion

of visibility robustness can rank the cues given by the process in order to obtain

definite waypoint for the underlying guidance), more simulation - particularly of

the deployment - is necessary to provide usable and implementable heuristics and

algorithms.
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Adaptive Control of a High Agility Model 
Airplane in the Presence of Severe Structural 
Damage and Failures 

Stephan Baur,
1
Travis Gibson, Anuradha Annaswamy, Leonhard Höcht,  

Thomas Bierling, and Florian Holzapfel  

Abstract. Adaptive control is a promising technology for future high-performance, 

safety-critical flight systems. By virtue of their ability to adjust control parameters as 

a function of online measurements, adaptive flight control systems offer improved 

performance and increased robustness. This paper addresses the adaptive control of 

extremely agile aircrafts in the presence of damages and failures. The FSD Ex-

tremeStar, a modified version of the polystyrene model airplane Multiplex TwinStar 

II, is used as a platform for this purpose by offering a highly redundant set of control 

surfaces. The underlying nonlinear model, including the effect of all control inputs, 

is derived from first principles. A dynamic-inversion PI-error controller is proposed 

as the baseline controller for a model reference adaptive tracking control. The result-

ing performance is evaluated for aggressive maneuvers in the presence of elevator 

failures using the complete nonlinear model. 

1   Introduction 

In recent years, the interest in adaptive control for autonomous flight has been re-

newed. Due to their ability to self-tune their parameters using on-line measure-

ments, control in the presence of unforeseen damages and failures is enabled 

through adaptation in a highly satisfactory manner. Over the past thirty years, the 
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field of adaptive control has laid the foundation for analysis and synthesis of such 

systems [1]. Stability and robustness properties of these systems are well under-

stood. Adaptation in single-input and multiple-input systems, continuous and dis-

crete-time systems, time-invariant and time-varying systems, as well as of linear 

and nonlinear systems have been studied in depth. Over the past few years, several 

adaptive flight controllers have flown successfully [2],[3],[4],[5],[6],[7],[8] and 

enabled successful flight even in the presence of severe failures and damages. The 

tasks in these cases have focused on way-point tracking or landing. Very few re-

sults are currently available where highly agile aerobatic maneuvers have been 

carried out in the presence of severe failures. This paper addresses the adaptive 

control in the presence of failures for a highly agile aircraft. 

2   The Aircraft Model 

In this section, a nonlinear model for a high agility aircraft, the FSD ExtremeStar, 

is derived from first principles. This model will be used for design and evaluation 

of adaptive controllers for performing high agile maneuvers in the presence of se-

vere structural damage (e.g. parts of the wing or of the tail missing) or failures 

(e.g. reduced control surface efficiency, motors). The FSD ExtremeStar is a modi-

fied version of the polystyrene model airplane Multiplex TwinStar II. The modifi-

cations were conducted by the Akamodell München on behalf of the Institute of 

Flight System Dynamics of Technische Universität München for investigating 

flight dynamics and flight control methods (e.g. control allocation, nonlinear adap-

tive control) on an Unmanned Aerial System (UAS) with a large number of flight 

control inputs [9]. To facilitate this, the model features one aileron and one flap 

control surface on each wing, a canard as well as a horizontal tail with variable in-

cidence, a rudder on the vertical tail, two wing-mounted propellers with variable 

vertical tilt angle and one tail-mounted propeller with variable tilt and azimuth an-

gle (see Figure 1). Additionally, an independent control of left and right side con-

trol devices is possible. The aircraft’s actuation is therefore highly redundant as 

the flaps or ailerons could, for instance, be used for producing a rolling as well as 

a pitching moment.  

Aileron
Flap

Rudder

2-axis Tilt

Propeller

Vertical Tilt

Propeller

Canard

Variable Incidence

Horizontal Tail

Parameter Value 

Wing span 1.40 m 

Canard span 0.58 m 

Horizontal tail span 0.42 m 

Fuselage length 1.35 m 

Left/right motor 2 x max. 500 W  

Left/right propeller CAMcarbon 11” x 6” 

Tail motor max. 75 W  

Tail propeller GWS 8” x 4.3”  

Fig. 1 FSD ExtremeStar with Illustration of Multiple Control Devices and Configuration 

Data 
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The required aerodynamic terms for the nonlinear model consist of three force 

( , ,
D Q L

C C C ) and three moment coefficients ( , ,
l m n

C C C ). They were calculated 

with the AeroTool, which was developed in cooperation between Bauhaus Luft-

fahrt and the Institute of Flight System Dynamics. This tool allows the calculation 

of aerodynamics for a composition of lifting surfaces (using potential flow theory 

[10]), rotors (using momentum theory [11],[12],[13],[14],[15]) and bodies (using 

DATCOM methods [16]) by considering the influence of these objects on each 

other [17] as well as for the linear and nonlinear angle of attack range. It enables 

the user to calculate the re-

quired aerodynamic coeffi-

cients as a function of the 

chosen six state variables 

( , , V, p, q, r)α β  and the 16 

control inputs (9 control 

surfaces, 3 thrust vectors 

and the according tilt an-

gles as well as the azimuth 

angle of the tail mounted 

motor). The aerodynamics 

were calculated for an angle of attack ranging from -27.5° to 27.5°, for an angle of 

sideslip from -15 to 15° and the possible control surface inputs. The results for 
L

C  

for different motor rotation speeds are shown in Figure 2 [18]. 

Due to the 16 control surfaces and the considered six aerodynamic state vari-

ables it is computationally intensive to carry out a full factorial design where each 

input dimension is discretized on a selected range into a number of breakpoints 

and the output is calculated for every combination of these input values. There-

fore, a simplification of the data structure, which optimally preserves the charac-

teristics of the original numerical model, was found. The symmetry of the FSD 

ExtremeStar to the xy − plane was used and thus only the forces and moments for 

the right side were calculated. The aerodynamics of the whole aircraft were  

determined by composing the calculated aerodynamic data for the symmetrical 

parts and by adding the calculated data for the non-symmetric components, such 

as fuselage and vertical tail [18],[21]. 

The influence of different variables on each other (e.g. angle of sideslip on the 

effect of an elevator deflection) was assessed and, based on this analysis, the in-

fluences of second or lower order variables (e.g. influence of canard deflection on 

elevator efficiency) were neglected in the calculation [18].  

The described simplifications helped to reduce the computation time by  

orders of magnitude by still preserving the essential dependencies of the different 
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Fig. 2 Comparison of Original and Composed Model 
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control inputs and the overall nonlinear aerodynamic behavior of the aircraft. The 

simplifications were validated by comparing the results of a full aerodynamic 

model with those of the symmetric reduced model for arbitrarily chosen input 

variables for all six coefficients. The comparison of the obtained data showed very 

good agreement, as can be seen in Figure 2. 

The actuation of the control surfaces of the FSD ExtremeStar is performed with 

servos, which were modeled in Matlab/Simulink using a second order lag model. 

The different parameters of the model as the damping, the eigenfrequency and the 

limits for the maximum moment, velocity and the maximum amplitude were either 

set according to the information as provided by the datasheets of the manufacturers 

(e.g. maximum moment) or determined experimentally (e.g. maximum deflection). 

The FSD ExtremeStar offers three different thrust vectors, which are located on 

the left and the right side of the main wing and at the tail of the fuselage. For the 

modeling of the motor system the dynamics of the battery, of the cables and of the 

brushless controller are neglected and modeled as a resistance. The FSD Extreme-

Star, as a high agility model airplane performing aerobatic maneuvers, will  

operate at nearly full motor rotation speed for most of the time, and the brushless 

motors are therefore modeled for simplification with a full load motor model. The 

forces and moments of the propeller were calculated with the previously men-

tioned AeroTool, whereas the moments of inertia of the rotating parts were calcu-

lated with an appropriate CatiaV5 model. 

There are different types of sensors used in the aircraft such as an INS, dynamic 

pressure as well as magnetometer sensors, etc. For a test of the controller in pres-

ence of uncertainties like sensor errors and bias, it is necessary to simulate the real 

behaviour of the sensors as accurately as possible. Therefore, using the data pro-

vided by the manufacturer, models for each of the sensors were established, taking 

into account null shift bias, white noise, bias short-term stability, scale factor ab-

solute value uncertainties and misalignment of the sensor axes [21]. 

The equations of motion for the FSD ExtremeStar are derived for a flat and 

non-rotating Earth, as the UAS only performs local missions at a low operation  

altitude. The 6-DOF equations of motion require the knowledge of the inertia ten-

sor [ ]²I kgm  relative to the reference point R . The Inertia tensor was determined 

with appropriate CatiaV5 models for the damaged as well as the undamaged FSD 

ExtremeStar and stored in appropriate data tables [19]. CatiaV5 provides the  

moments of Inertia for the center of gravity (CoG) of the considered body and 

they therefore have to be transformed to the according reference point R . 

The dynamics of the FSD ExtremeStar consist of the states 

 [ ]
0 1 2 3

, , , , , , , , ,
T

p q r q q q q V γ χ=x           (1) 
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where the first three entries are the rotation rates, the following four are the com-

ponents of the quaternion attitude vector and the last three are the kinematic state 

variables. The inputs are given as 

 , , , , , , , , , , , ,
l r l r l r l r

T

cr cr l r F F T l T r ele ele
η η ξ ξ δ δ δ σ δ σ η η ζ= ⎡ ⎤⎣ ⎦u  (2) 

with the first two entries denoting the canard deflection, followed by the left and 

right aileron deflection, the flap deflections, the motor tilt angle and the motor ro-

tation speed of the left and the right motor, and finally the elevator and the rudder 

deflections. 

The resulting model is given with the well-known time derivatives of: 

- the rotation rates: 

 ( ) ( ) ( ) ( ) ( )
1

OB G G OB G OB

K BB K BB KB B B B

−

= ⋅ − × ⋅⎡ ⎤⎣ ⎦∑ω I M ω I ω
ff f f$  (3) 

- the attitude quaternion 

 

0
01

2

T
q

q
−

=
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

q

ωq Q
$  (4) 

                 with [ ]
1 2 3

T

q q q=q and 

0 3 2

3 0 1

2 1 0

q q q

q q q

q q q

−

= −

−

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
Q  

- the path dynamics: 
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,

,

,

sin1 0 0
1
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F

F
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m

V
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γ
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−
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$

$
$

  (5) 

 
It can clearly be seen that the given model is nonlinear and provides the starting 

point for the dynamic inversion based controller [20],[21]. In this model, as well 

as in the current work, the rear motor is neglected and is a topic for future re-

search. It can be seen that Quaternions are used for the simulation of the aircraft 

and will also be used for control design as they do not suffer from singularities 

like Euler angles.  

3   Adaptive Control of the FSD ExtremeStar 

In the following, an adaptive controller, which is based on the nonlinear model de-

scribed in (3), (4) and (5), will be designed to accommodate for failures in the 

control surfaces. This controller is integrated with a dynamic inversion based 

baseline controller with the latter designed to ensure that the aircraft performs in a 

desired manner in the absence of any damages or failures. Given the large number 
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of control inputs, two different control allocation methods are possible. In the first 

case, the redundant control surfaces of the FSD ExtremeStar are fully used, 

whereas, in the second case, the control inputs are chosen as in a conventional air-

craft (only ailerons, elevators and rudder) with the remaining surfaces being fixed 

at their neutral positions. In the following the attention will be focused, due to 
space limitations, on the second method. 

3.1   Dynamic Inversion Baseline Controller 

A relative degree one dynamic inversion controller, based on Quaternions, for rate 

command tracking and attitude hold was designed as the baseline controller. 

The equations and the basic principle of the implemented dynamic inversion 
PI-error controller can be seen in Figure 3 and 4. 
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Fig. 3 Basic Layout of RD 1 Dynamic Inversion 

The pseudo control input for the dynamic inversion controller is given by: 

( ) ( )
, ,R R P RM I RMerror

dt
ω ω

= + ⋅ − + ⋅ −= + ∫ν ν ν K ω ω K ω ωv
f f f f

 (6) 

where 
error

v  denotes the output of the PI-error controller with the proportional gain 

matrix 
,P ωK  and the integral gain matrix 

,I ωK  and 
R
ν  is calculated based on  

the commanded 
,CMD outer

ω
f

 and the reference rotation rates 
RM

ω
f

 by a first order linear 

reference model according to [21],[22]: 

 ( )
,RM RMRM CMD outR er

= = −ω ωK ων f f$ f
 (7) 

with 
RM

K  specifying the dynamics of (7). 

The control allocation of the FSD ExtremeStar uses a constrained minimiza-

tion, with Equation (8) serving as the cost function, where the control surface de-

flection being necessary for a desired moment is minimized [21].  

 ( )
1

2

T T

des
J = + ∆ − ∆∆ ∆u W u λ B u M  (8) 
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where desΔM

 

is the desired moment increment as provided by the dynamic inver-

sion, and

 

based on the current state variables and moments of the airplane, and 

Δu

 

is the corresponding incremental control input being necessary to achieve 

desΔM . 

The weighting matrix W  allows prioritizing or neglecting specific control sur-

faces. Therefore, it allows making use of the full redundant control surfaces of the 
FSD ExtremeStar or to treat it like a conventional aircraft by only using the ailer-

ons, elevators and the rudder.  

The constraint minimization is performed online for each simulation step  

respectively for each sampling/calculation of the real controller. This allows ob-

taining an optimal control surface deflection for a desired commanded rotation 

rate and attitude. The dynamic inversion as well as the control allocation assumes 
an undamaged aircraft since, in the case of failures, no information about the type 

of severe structural damage or failures are available to the baseline controller. 

Therefore, the baseline controller will be augmented by an adaptive part to  

account for this. 

3.2   MRAC Architecture for Adaptive Tracking 

By applying the dynamic inversion controller to the plant, assuming the aircraft 

dynamics are perfectly known, the overall closed loop system has a linear behav-
iour [20],[21]. 

 
1

s
= ⋅y ν  (9) 

where y  is the output of the system and ν  is the pseudo command input from (6). 

For simplification only a single input single output (SISO) system will be consid-

ered in the following. The input for the SISO system is the reference pitch rate 

,CMD outer
q , as commanded to the reference model, and the output is the pitch rate 

MEAS
q , as achieved by the feedback linearized plant. For the proposed MRAC ar-

chitecture an explicit direct MRAC tracking approach as shown in Figure 4 will be 
chosen. 
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Fig. 4 Adaptive Control Architecture for Tracking in the Pitch Axis 
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The time derivative of the pitch rate is given with (3) to (5):  

 
( ) ( )

( )

( )

( ) ( )

2 2

ˆ

1
,

z x xz

MEAS

y y

deflectionb a u a B u

I I pr I p r
q M u

I I

⋅ = ⋅ ⋅

− + −
= + ⋅

x x x

x$

'****(****) '*(*)
 (10) 

p  and r  can be assumed to be approximately zero, since these axes are stabilized 

by according controllers. Thus ( )b x  vanishes and Equation (10) can be  

written as: 

 ( ) ( )ˆ
MEAS deflection

q a u a B u= ⋅ = ⋅ ⋅x x$  (11) 

where ( )
( )

ele

ele

deflection

M
B u η

η

∂
⋅ = ⋅

∂

x
x  for the left and the right elevator being  

deflected symmetrical. 
ele

η  denotes the elevator deflection and 
( )

ele

M

η

∂

∂

x
 the  

pitching moment due to an elevator deflection.  

In the presence of damage we can represent the corresponding pitching moment 

derivative due to an elevator deflection as 
( )

q

ele

M
λ

η

∂

∂
⋅

x
, where 

q
λ denotes the re-

maining elevator efficiency with 0 1
q

λ≤ ≤  and 1
q

λ =  specifies the undamaged 

case. The corresponding damaged plant dynamics for the pitch axis is thus  

given by: 

 ( )
MEAS q deflection

q a B uλ= ⋅ ⋅⋅ x$  (12) 

Since the dynamic inversion controller still assumes an undamaged plant the same 

control input, as without damage, is used and given by: 

 ( )( ) 1 1

deflection qu B a ν
− −

= ⋅ ⋅x  (13) 

It can be shown that the plant with the applied dynamic inversion results in: 

 
MEAS q q

q λ ν= ⋅$  (14) 

For the considered case and, if the roll and the yaw rate are kept to zero, the output 

MEAS
q  is given in the frequency domain by: 

 
MEAS

q

q
q

s

λ
ν= ⋅  (15) 

The PI-Error controller, as presented in (6), can be rewritten for each of the three 

aircraft axis (roll i p= , pitch i q=  and yaw i r= ) as: 



Adaptive Control of a High Agility Model Airplane  209

 

 
( )

error
i

i i i i i
k J s k

s

ϑ ϑ
ν

+ +
=  (16) 

with the fixed gains ik , iϑ  and 1
iiJ λ= , where ( )1

i
λ−  is the failure of the  

single axis. In the considered case, since only the elevator is facing reduced  

efficiency, we can chose 1
p r

J J= =  and 1
qq

J λ= . 

The control input for each of the single axis can be written, using (16) and con-

sidering the first order reference model for the rates, as given in (7), as: 

 ( ) ( )
Ri i i i i i i i i

J e e e dtkν ν ϑ ϑ= + + + ∫  (17) 

with the error ( )
RM

i i MEASi
e ω ω= − .  

While (18) can be implemented for the roll and yaw axis, this is not possible for 

the pitch axis, as 
q

J  is unknown. 

Denoting ( )
1 Rq q q q

e eν ϑ= +  and ( )
2q q q q

e e e dtϑ= + ∫  an adaptive control 

input is generated for the pitch axis as: 

 
1 22

ˆ ( ) ( )q q qJe t k e tν = + ⋅  (18) 

It can be shown that V  in Equation (19) is a Lyapunov function: 

 
2

2

21 1

2
qV Je J

γ
= +

⎛ ⎞⎜ ⎟⎝ ⎠#  (19) 

with ˆJ J J= −# . Since ( )
2 1 2

1 1
( ) ( )

q q q q
e J e t k e t

J J
= − −#$  the time derivative of V  

is given by: 

 m
!

2

0

0 0

2 1 2

1
( ) ( ) ( )

q q qq
V k e t Je t e t JJ

γ
>

< =

= − − +
$$ # ##

'**(**)'*(*)
 (20) 

It can be seen that the first part of (20) will always be smaller than zero. The sec-

ond part will be designed in a way that it is always equal to zero and yields the 

adaptive update law. If Ĵ
$

, the adaptive parameter in (18), is adjusted as: 

 
1 2

ˆ ( ) ( )q qJ e t e tγ= −
$

 (21) 

the stability for the chosen adaptive law is shown [1],[21],[23] while the learning 

rate of the adaptive law can be adjusted with the constant parameter γ . 
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4   Validation of Adaptive Controller and Conclusion  

In the following the derived adaptive law is assessed for the control of the FSD 
ExtremeStar with several aggressive pitch rate commands of 60 [deg/s], where 
each is commanded for a duration of 6 seconds, and with an elevator efficiency of 

0.2
q

λ = . 

Our assumption here is that only the pitch-axis loop requires adaption as the 

failure is in the elevator. A non-adaptive PI controller, as given in (16), is used for 

the roll and the yaw axis, while the adaptive controller given by (18) and (21) will 

be used for the pitch-axis. The assumption is that the fixed controllers will ensure 

that p  as well as r  remain near zero and the adaptive controller focuses on the 

damaged pitch-axis. 

It can be seen that over the first few cycles, both the PI-error controller without 

adaption (cyan) as well as with adaption (red), exhibit similar performance.  

However as time proceeds, the adaptive controller adjusts its parameters and due 

to its learned behaviour it results in a much better performance than the non-

adaptive PI-controller. Moreover it is also able to reestablish the desired nominal 

performance.  
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Fig. 5 Implemented Design for Adaptive Tracking 

The results show that adaptive control is a promising approach for the control 

of high agility aircraft in the presence of severe structural damage and failures. 

This approach will be extended and analysed in depth in subsequent publications. 
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Adaptive Control of Non-minimum Phase 
Modal Systems Using Residual Mode Filters: 
Part I 

Mark J. Balas and Susan A. Frost
*
 

Abstract. Many dynamic systems containing a large number of modes can benefit 

from adaptive control techniques, which are well suited to applications that have 

unknown parameters and poorly known operating conditions. In this paper, we  

focus on a direct adaptive control approach that has been extended to handle adap-

tive rejection of persistent disturbances. We extend this adaptive control theory to 

accommodate problematic modal subsystems of a plant that inhibit the adaptive 

controller by causing the open-loop plant to be non-minimum phase. We will 

modify the adaptive controller with a Residual Mode Filter (RMF) to compensate 

for problematic modal subsystems, thereby allowing the system to satisfy the re-

quirements for the adaptive controller to have guaranteed convergence and 

bounded gains. This paper will be divided into two parts. Here in Part I we will 

review the basic adaptive control approach and introduce the primary ideas. In 

Part II, we will present the RMF methodology and complete the proofs of all our 

results. Also, we will apply the above theoretical results to a simple flexible struc-

ture example to illustrate the behavior with and without the residual mode filter. 

1   Introduction 

Applications of control theory to flexible aerospace structures have been many 

and varied. The survey [13] provides a foundation for structure control with many 

control approaches and examples. This was based upon a distributed parameter 

approach to control of flexible structures and other very large-scale systems [14]. 

Later work created the idea of a Residual Mode Filter (RMF) to offset the destabi-

lizing effect of unmodeled modes in a feedback control environment [15]-[17]. 

This RMF-based structure control theory has been applied to the complex control 
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issues for large horizontal-axis utility-sized wind turbines [18]-[21], and is begin-

ning to be applied to aeronautic problems that currently use notch filters, eg for 

flutter, also we are applying the theory to aircraft control where there are flexible 

modes in the pilot bandwidth, e.g. large civil tilt rotor. 

In this paper, we extend our adaptive control theory [1]-[4], [7] to accommo-

date modal subsystems of a plant that inhibit the adaptive controller, in particular 

those residual modes that interfere with the almost strict positive real condition. 

The systems we consider will be large dimensioned, linear time invariant ones 

which can be diagonalized or placed into modal form. This will include linear 

flexible structures of many types. Our adaptive Control approach allows for large 

dimensioned systems through a foundational use of Ideal Trajectories so that the 

adaptive controller is of much lower dimension than the plant. 

The modification will use the idea of Residual Mode Filters (RMF) introduced 

for fixed gain controllers in [6]. In this paper the RMF will be used to eliminate 

the effect of modes that prevent the almost strict positive realness of the overall 

system by being non-minimum phase. This is a new use of the RMF idea; in pre-

vious non-adaptive work the purpose of the RMF was to eliminate or mitigate the 

destabilizing effect of modes unmodeled in the control system design, whereas 

here the RMF is applied to reinstate the minimum phase nature of the plant under 

adaptive control. 

Here in Part I we will review the basic adaptive control approach and introduce 

the primary ideas. In Part II, we will present the RMF methodology and complete 

the proofs of all our results using results from [8]. Also, we will apply the above 

theoretical results to a simple flexible structure example to illustrate the behavior 

with and without the residual mode filter. 

2   Rejection of Persistent Disturbances 

The Plant used in this theory section of the paper will be modeled by the linear, 

time-invariant, finite-dimensional system: 

⎪⎩
⎪⎨⎧

==

++=

0)0(; xxCxy

ΓuBuAxx

ppp

Dppp$
                                           (1) 

where the plant state )(tpx , is an Np-dimensional vector, the control input vector, 

)(tpu , is M-dimensional, and the sensor output vector, )(tpy , is P-dimensional.  

The disturbance input vector, )(tDu , is MD-dimensional and will be thought to 

come from the Disturbance Generator: 

⎩⎨
⎧

==

=

0)0(; zzzFz

zΘu

DDD

DD

$
                                          (2) 

where the disturbance state, )(tDz , is ND-dimensional. All matrices in (1)-(2) 

will have the appropriate compatible dimensions. Such descriptions of persistent 
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disturbances were first used in [5] to describe signals of known form but unknown 

amplitude. Equation (2) can be rewritten as in [3] in a form that is not a dynamical 

system, which is sometimes easier to use: 

⎩⎨
⎧

=

=

DD

DD

φLz

zΘu
                                                           (3) 

where Dφ  is a vector composed of the known basis functions for the solution of 

DD zΘu = , i.e., Dφ  are the basis functions which make up the known form of the 

disturbance, and L is a matrix of dimension ND x dim( Dφ ). For the analysis per-

formed in this paper, the amplitude of the disturbance does not need to be known, 

so )( ΘL,  can be unknown. For a better understanding of the disturbance genera-

tor, consider the example of a disturbance generator for a step disturbance; in the 

form of equation (2), a step disturbance would have 1=Θ  and 0=F , in the form 

of equation (3), a step disturbance would have 1≡Dφ . 

In [5]-[6], as with much of the control literature, it is assumed that the plant and 

disturbance generator parameter matrices, ),,( FΘΓC,B,A, , are known. This 

knowledge of the plant and its disturbance generator allows the Separation Princi-

ple of Linear Control Theory to be invoked to arrive at a State-Estimator based, 

linear controller which can suppress the persistent disturbances via feedback. In 

this paper, we will not assume that the plant and disturbance generator parameter 

matrices, ),( ΘΓC,B,A, , are known. But, we will assume that the disturbance 

generator parameter from (2), F, is known, i.e., the form of the disturbance func-

tions is known. In many cases, knowledge of F is not a severe restriction, since the 

disturbance function is often of known form but unknown amplitude. 

Our control objective will be to cause the output of the plant, )(tpy , to asymp-

totically track the output of a known reference model, )(tmy . The Reference 

Model is given by 

⎪⎩
⎪⎨⎧

=

=+=

mmm

m
mmmmmm

xCy

x(0)x;uBxAx 0
$

                                    (4) 

where the reference model state, )(tmx , is an Nm-dimensional vector. The refer-

ence model output, )(tmy , must have the same dimension as the plant output, 

)(tpy .  The excitation of the reference model is accomplished via the vector, 

)(tmu , which is generated by 

m
mmmm 0)0(; uuuFu ==$                                                 (5) 

It is assumed that the reference model is stable and the model parameters, 

( )mmmm FCBA ,,, ,  are known. 
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As in [5]-[6], we define the Ideal Trajectories for the plant given by (1) as lin-

ear combinations of the plant states, the control inputs, and the disturbance inputs: 

⎪⎩
⎪⎨⎧

++=

++=

Dmm

Dmm

zSuSxSu

zSuSxSx

*
23

*
22

*
21*

*
13

*
12

*
11*

                                            (6) 

where )(* tx  is the ideal trajectory, )(* tu  is the  ideal control, )(* tu  and  

⎩⎨
⎧

==

=++=

∗∗

∗∗∗∗

m

D

yCxy

xxΓuBuAxx 0)0(;$
                                        (7) 

Note that the ideal output, )(t*y , matches the reference model output, )(tmy . If 

such ideal trajectories exist, they will produce exact output tracking. 

By substituting the ideal trajectories given in (6) into (7) and by using the dis-

turbance generator given by (2), the ideal trajectories can be made to match the 

reference model (4)-(5) with the following Model Matching Conditions: 

⎪⎪
⎪⎪

⎩

⎪⎪
⎪⎪

⎨
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=

=

=

=++

+=+

=+

∗

∗

∗

∗∗∗

∗∗∗∗

∗∗∗

0CS

0CS

CCS

FSΓΘBSAS

FSBSBSAS

ASBSAS

13

12

11

132313
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mm

m

                                      (8) 

The model matching conditions given in (8) are necessary and sufficient condi-

tions for the existence of ideal trajectories. Solutions to these matching conditions 

must exist for later analysis, but explicit solutions need never be known for the 

adaptive controller design. Necessary and sufficient conditions for the existence 

and uniqueness of solutions to (8) are given in [9]. We repeat this result here for 

completeness and the proof is given in the Appendix found in Part II. 

Lemma 1: If CB is nonsingular, there exist unique solutions to the Linear 

Matching Conditions (8) when BAsICsT 1)()( −−≡  shares no transmission zeros 

with the eigenvalues of FFA mm or  ,, .  

The desired control objective is for the output of the plant to asymptotically 

track the output of the reference model. We define the output error vector as: 

mpy yye −≡                                                           (9) 

To achieve the desired control objective, we want 0 →
→∞tye . We define the 

state tracking error as follows: 

** xxe −≡ p                                                         (10) 
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Using (7) and (10), we can write the output error vector as: 

*** CeCxCxyyyye =−=−=−≡ ppmpy                              (11) 

Furthermore, if we let *uuu −≡∆ p , from (1) and (7) we have 

uBAee ∆+= ∗∗
$                                                     (12) 

For analysis purposes, we define a Fixed Gain Controller 

yep eGuu
*

* +=                                                   (13) 

If we use the fixed gain control law (13) in the plant given by (1), combined with 

the definition of *x$  from (7) and the output error vector in the form of equation 

(11), we obtain:  

( ) ∗
∗

∗ += eCBGAe e
$                                               (14) 

We can summarize the above by the following: 

 

Theorem 1. If )( CB,A,  is output feedback stabilizable with a gain *
eG , i.e., the 

eigenvalues of CBGAA
*
eC +≡  are all to the left of the jω-axis, then the fixed 

gain controller, (13), will produce asymptotic output tracking, i.e., 0 →
→∞tye . 

If all the plant parameters, ),,( FΘΓC,B,A, , are known, then the fixed gain  

controller given by (13) with a state estimator for Dz  would be adequate for  

asymptotic tracking. Note that output feedback stabilization of )( CB,A,  can be 

accomplished when  

pD NNPM >++                                                     (15) 

and )( CB,A,  is controllable and observable [9]. In (13), detailed knowledge of 

the parameter matrices is not required, suggesting that an adaptive control scheme 

might be possible under our original assumptions that ),( ΘΓC,B,A,  are un-

known and F from (2) is known. 

Consider the plant given by (1) with the disturbance generator given by (3). 

Our control objective for this system will be accomplished by an Adaptive Control 

Law of the form: 

DDyemummp φGeGuGxGu +++=                                    (16) 

where Deum GGGG  and ,,,  are matrices of the appropriate compatible dimen-

sions, whose definitions will be given later. We develop the gain adaptation laws 

to make asymptotic output tracking possible by first forming the following which 

are intended to simplify our notation:  
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The starred gains in (17) are for analysis and come from the ideal trajectory, *x , 

of equation (6) with Dz  in the form given in (3), which is then substituted into the 

fixed gain controller (13). Using (6), (7), and the adaptive control law (16), we can 

define: 

( ) DDyeemmmu

p

φGeGGxGuG

uuu

∆++∆+∆+∆=

−=∆

∗

∗
                      (18) 

Then, via (11), (12), and (18), with appropriate definitions, we have: 
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                      (19) 

where 
TT

D
T
y

T
m

T
m ][ φη exu≡ is the vector of available information. We combine 

(12) and (19) to obtain the Tracking Error System: 
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⎧
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∆+=
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Cee

GBeAe

y

C η$
                                               (20) 

Now we specify the Adaptive Gain Laws: 

HeG
T

yη−=$                                                       (21) 

where ][ iihH = , i=1,2,…,4 is an arbitrary, positive definite matrix (i.e., H > 0). 

This yields 
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                                                  (22) 

Our Adaptive Controller is specified by (16) with the above adaptive gain laws 

(22). Note that none of the starred gains used in the earlier analysis appear in  

the realizable control law, (16) and (22). Next we will analyze the stability of this 

controller. 
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The closed-loop adaptive system consists of (1)-(5), (9), (16), and (22). Using 

(20) and (21), we have 
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                                             (23) 

where CBGAA *
eC +≡ .  We are able to obtain (23) from (21) because 

*GGG −≡∆  where ] [ 2321
*
22* LSGSSG **

e
*   ≡  is constant (although generally 

unknown). The stability of the nonlinear system (23) can be analyzed using 

Lyapunov Theory. We form the positive definite functions: 
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                               (24) 

where 0>P  is the solution of the following pair of equations: 

⎪⎩
⎪⎨⎧

=

>−=+

T

C
T
C

CPB

QQPAPA 0  ; 
                                      (25) 

These equations are usually known as the Kalman-Yacubovic Conditions. The ex-

istence of a symmetric positive definite solution of (25) is known to be equivalent 

to the following condition:  

( ) )( real positivestrictly  is  )(
1

SPRss CC BAICT
−

−≡                        (26) 

For a proof of this equivalence, see [12] App. B. The strict positive realness of 

)(sCT  means that for some 0>σ  and for all ω real, 

0)(Re ≥+− ωσ jCT                                                (27) 

If we calculate the derivatives, iV$ , along the trajectories of (23), we have, using 

(25), that 
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and 
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We can form *21
2

1
Qee

T
*−=⇒+≡ VVVV $  with 0 ≤V$ . Consequently, 

Lyapunov theory guarantees stability of the zero equilibrium point of (23) and all 

trajectories of (24) will remain bounded. This guarantees that both *e  and G∆  

are bounded. 

We can summarize the above by the following Closed-Loop Stability Result: 

 

Theorem 2. Suppose the following are true: 

(1) All )(tmu  are bounded (i.e., all eigenvalues of Fm are in the closed left-

half plane); 

(2) The reference model (4) is stable (i.e., all eigenvalues of Am are in the 

open left-half plane); 

(3) Dφ  is bounded ( i.e., all eigenvalues of F are in the closed left-half plane 

and any eigenvalues on the imaginary axis are simple); 

(4) (A, B, C) is Almost Strict Positive Real (ASPR), i.e., 

( ) BAICT
1

)(
−

−≡ CC ss  is strictly positive real. 

Then *e  and G∆ are bounded and 0*  →
→∞t

e  and 

0*  →=−≡
∞→tmpy Ceyye . 

See the Appendix in Part II for a proof of Theorem 2. 

This stability analysis shows that asymptotic tracking occurs and the adaptive 

gains remain bounded. It does not prove that 0G  →∆
∞→t

. In fact, the gain ad-

aptation laws (22) may not converge to the starred gains in (8); however, this is 

not required for the adaptive controller to achieve its goals. 

3   Conclusions for Part I 

We have reviewed our adaptive control theory here. This theory accounts for 

adaptive model tracking and for leakage of the disturbance term into the Q modes. 

However, the results require that the error system be minimum phase. In Part II, 

we will show how to modify the adaptive control with residual mode filters to deal 

with non-minimum phase systems. 
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Adaptive Control of Non-minimum Phase 
Modal Systems Using Residual Mode Filters: 
Part II 

Mark J. Balas and Susan A. Frost
*
 

Abstract. In Part II, we extend our adaptive control theory to accommodate prob-

lematic modal subsystems of a plant that inhibit the adaptive controller by causing 

the open-loop plant to be non-minimum phase. We will modify the adaptive con-

troller with a Residual Mode Filter (RMF) to compensate for problematic modal 

subsystems, thereby allowing the system to satisfy the requirements for the adap-

tive controller to have guaranteed convergence and bounded gains. Also, we will 

apply the above theoretical results to a simple flexible structure example to illus-

trate the behavior with and without the residual mode filter. 

1   Introduction 

In Part II, we continue the development of the adaptive control approach. We will 

keep the consecutive equation numbering from Part I as well as the same reference 

list. We modify the adaptive control using the idea of Residual Mode Filters 

(RMF) introduced for fixed gain controllers in [6]. In this paper the RMF will be 

used to eliminate the effect of modes that prevent the almost strict positive real-

ness (ASPR) of the overall system by being non-minimum phase. We have main-

tained the same reference list here as in the previous paper to make both papers 

more readable. 

2   Residual Mode Filter Augmentation of Adaptive Controller 

In some cases the plant in (1) does not satisfy the requirements of ASPR. Instead, 

there maybe be a modal subsystem that inhibits this property. This section will 

                                                           
Mark J. Balas  
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present new results for our adaptive control theory. We will modify the adaptive 

controller with a Residual Mode Filter (RMF) to compensate for the troublesome 

modal subsystem, or the Q modes, as was done in [6] for fixed gain non-adaptive 

controllers. Here we present the theory for adaptive controllers modified by 

RMFs. In a previous paper, we examined the RMF with adaptive control, but as-

sumed that there was no leakage of the disturbance into the Q modes [7]. Here we 

will deal with the issue of disturbances propagating through these modes. 

Let us assume that (1) can be partitioned into the following modal form: 

[ ]⎪⎪⎩
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Define xp ≡
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$

 
or zD = LφD  as before in (2)-(3).  

The Output Tracking Error and control objective remain as in (4)-(5), i.e. 

0 →−≡
∞→tmpy yye .  

However, now we will only assume that the subsystem ( )CBA ,,  is Almost 

Strictly Positive Real, rather than the full un-partitioned plant ( )ppp CBA ,, , and 

the modal subsystem ),,( QQQ CBA
 
will be known and open-loop stable, i.e., AQ  

is stable. Also note that this subsystem is directly affected by the disturbance in-

put. Recall that ASPR means 0>CB  and BAsICsP 1)()( −−=  is minimum 

phase. So, in summary, the actual plant has an ASPR subsystem and a known mo-

dal subsystem that is stable but inhibits the property of ASPR for the full plant. 

Hence, this modal subsystem must be compensated or filtered away. 

We define the Residual Mode Filter (RMF): 

⎪⎩
⎪⎨⎧

=

+=

QQQ

pQQQQ

xCy

uBxAx

ˆˆ

ˆ$̂
                                            (2) 

And the compensated tracking error:  

˜ e y ≡ ey − ˆ y Q                                                        (3) 

Now we let eQ ≡ ˆ x Q − xQ  and obtain: 

DQQQQ ueAe Γ−= ε$                                                   (4) 
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Consequently,  

QQ

QQQQQQQyy
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eCxCxCxCyee
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(5) 

As in [1]-[2], we define the Ideal Trajectories, but only for the ASPR Subsystem:  
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with 
x* = S1

*
zD

u* = S2
*zD
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 . This is equivalent to the Matching Conditions:  
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which are known to be uniquely solvable when CB is nonsingular. However, we 

do not need to know the actual solutions for this adaptive control approach. 

Let  
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(8) 

because, from (33), y* = 0. This system can be rewritten: 
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Now we have the following: 

Lemma. [ ]⎟⎟⎠
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is minimum phase. End of proof. 

So there exists *
eG  such that ),,( * CBCGBAA eC +≡

 
is Strictly Positive Real 

(SPR) when ),,( CBA
 
is ASPR. Consequently, as is well known from the Kal-

man-Yacubovic Theorem, there exists 0, >QP  such that 
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We now write the modified adaptive control law with RMF: 
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with modified adaptive gains given by 
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(12) 

Finally, we have the following stability result: 

 

Theorem 3. In (9), let ),,( CBA  ASPR, QA
 

stable, φD  bounded. Then the  

Modified Adaptive Controller with RMF in (19)-(20) produces py ye =  and eQ  

ultimately bounded into a ball of radius 
( )

νε M
pa

p
R

min

max
*

1+
≡  with exponential 

rate and bounded adaptive gains ),( De GG . 
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Proof: From (19), we have up ≡ Ge
˜ e y + GDφD , so we can write 
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Since ),,( CBA  is ASPR, and by the lemma, so is ),,( CBA , we can we can use 

the following result from [8] where ν ≡ Γ QuD  is bounded because the disturbance 

uD = LφD  is bounded. 

 

Result. Consider the nonlinear, coupled system of differential equations, 
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(15) 

where *G  is any constant matrix and h is any positive definite constant matrix, 

each of appropriate dimension. Assume the following: 

i) the triple ),,( CBA  is SPR, 

ii) there exists MK > 0 such that ( ) K

T
MGG ≤∗∗ , using the trace norm, 

iii) there exists Mν > 0 such that sup
t≥0

ν (t) ≤ Mν , 
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iv) there exists a  > 0 such that a ≤
qmin

2 pmax

, and 

v) h  satisfies 

2

2
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KaM
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h νε

, where pmin, pmax are the minimum and maximum 

eigenvalues of P and qmin is the minimum eigenvalue of Q  in the system 
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Then the matrix G(t) is bounded and the state ζ (t)  exponentially approaches the 

ball of radius  
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≡  with ε > 0 . 

From this result, we have ζ  is ultimately bounded into the ball of radius   R*, 

which leads to ey ≡ yp = yp − y* = C∆
 

and eQ  
ultimately bounded as well. 

Therefore G = G* + ∆G  is bounded, as desired. #

 
Consequently, the radius of the error ball 

( )
νε M

pa

p
R

min

max
*

1+
≡  is determined 

by the size of ε, which is related to the amount of disturbance leakage into the Q 

modes. It can be seen that, when there is no leakage of the disturbance into the Q 

modes (ε = 0 ), the convergence is asymptotic to zero.  

Also, when B=Γ  and QQ B=Γ , it is possible to choose  0*
1 =S  and θ−=*

2S  

in (34). Then, even if 1=ε , the tracking error will asymptotically go to zero. 

3   Simulation Results with RMF 

In this section we will apply the above theoretical results to a very simple flexible 

structure example to illustrate the behavior with and without the Residual Mode 

Filter. The structure has a rigid body mode and two flexible modes given by: 

23456
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This example can obviously be extended to have many more flexible modes. But we 

are only trying to illustrate the value of the RMF approach. More seriously complex 

flexible structures are being addressed but will have to await future papers. 

This plant has two non-minimum phase zeros at 0.422±0.9543j and thus  

does not meet the ASPR condition. However, when the middle mode 

PQ (s) = −
s

s2 + s +1  
is removed, the plant becomes: 
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P(s) =
1+ s

s2
+

1

s2 + s + 2
=

s
3 + 3s

2 + 3s + 2

s4 + s3 + 2s2
 which is minimum phase and has a 

state space realization given by: 
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with CB =1, so CB is  nonsingular. Therefore, (A,B,C)  is ASPR. 

The reference model to be tracked is 
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which is excited by steps generated by mm uu )0(=$ . The matching conditions are 

known to be solvable, but their solution is not needed to apply the theory. 

The RMF generated by 
1

3
)(

2 ++
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ss
sPQ  is represented by ,
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The adaptive controller given by (38) - (39) is implemented with hu=10, hm=1, 

he=10, hD=100, and a=0. The disturbance is a nondimensional step of size 10.  

Setting ε=1, we obtain figs. 1 and 2 from a MatLab/Simulink simulation. The  
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Fig. 1 Nondimensional output tracking response with adaptive controller augmented with 

RMF. 
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Fig. 2 Adaptive gains, Ge=error gain, Gd=disturbance gain. 

output tracking error is shown to converge to zero in fig. 1. The adaptive gains 

also converge in fig. 2. This illustrates the behavior of the adaptive controller plus 

the second order RMF. Without the RMF, the plant and adaptive controller are 

immediately unstable in closed-loop. 

4   Conclusions 

We have proposed a modified adaptive controller with a residual mode filter. The 

RMF is used to accommodate problematic modes in the system that inhibit the 

adaptive controller, in particular the ASPR condition. This new theory accounts 

for adaptive model tracking and for leakage of the disturbance term into the Q 

modes. A simple three mode example shows that the RMF can restore stability to 

an otherwise unstable adaptively controlled system. This is done without seriously 

modifying the adaptive controller design. 
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Appendix 

Proof of Lemma 1. The Linear Matching Conditions (8) can be rewritten: 

AS1 + BS2 = S1Lm + H1
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Suppose CB is nonsingular. Use the coordinate transformation W from Lemma 2 
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Now, if (A 22,Lm )
 
share no eigenvalues, it is well known [5] that we can solve the 

above for a unique S b 
and conversely, then , 
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share no eigenvalues, this is the same as A 22  sharing no eigenvalues 
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with Am , Fm  or F .  But the eigenvalues of A 22  from its normal form are known 

to be the transmission zeros of the open-loop system (A,B,C) ; see e.g. [13]. Thus, 

we have proved the result. End of Proof. 

 
Proof of Theorem 2 

It was already shown that e* and GΔ  are bounded. To prove that 0*  →
∞→t

e , 

we must use the following version of Barbalat’s lemma; see [19] pp. 210-211: 
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and e* and ∆G  are bounded by the previous argument via Lyapunov theory. Also 

η  is bounded since um  is bounded, Am  is stable, ey = Ce*  is bounded, and Dφ  is 

bounded.  Thus  ττ dVtV
t∫=
0

)()( $$$  is uniformly continuous and Barbalat’s Lemma 

may be applied to yield: 
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e , as desired. End 

of Proof. 

 



Global Tracking Control Structures for
Nonlinear Singularly Perturbed Aircraft
Systems

Anshu Siddarth and John Valasek

Abstract. The problem of simultaneous tracking of both fast and slow states for a

general class of nonlinear singularly perturbed systems is addressed. A motivating

example is an aircraft tracking a prescribed fast moving target, while simultane-

ously regulating speed and/or one or more kinematic angles. Previous results in the

literature have focused on tracking outputs that are a function of the slow states

alone. Moreover, global asymptotic tracking has been demonstrated only for a class

of nonlinear systems that possess a unique real root for the fast states. For a more

general class of nonlinear systems only local tracking results have been proven.

In this paper, control laws that accomplish global tracking of both fast and slow

states is developed using geometric singular perturbation methods. Global exponen-

tial stability is proven using the composite Lyapunov function approach and an up-

per bound necessary condition for the scalar perturbation parameter is derived. Con-

troller performance is demonstrated through simulation of a combined longitudinal

lateral/directional maneuver for a nonlinear, coupled, six degree-of-freedom model

of the F/A-18A Hornet. Results presented in the paper show that the controller ac-

complishes global asymptotic tracking even though the desired reference trajectory

requires the aircraft to switch between linear and nonlinear regimes. Asymptotic

tracking while keeping all the closed-loop signals bounded and well behaved is also

demonstrated. Additionally the controller is independent of the scalar perturbation

parameter nor does it require knowledge of it.

1 Introduction

This paper addresses systems that possess both slow and fast dynamics. This mul-

tiple time-scale behaviour is either a system characteristic (for example, aircraft

and flexible beam structures) or arises due to implementation of a fast controller
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(for example, systems with fast actuators and/or fast sensors). The control objective

is to develop a stable tracker for these two time-scale systems that would regulate

both slow and fast states simultaneously. The singular perturbation approach[13] has

been the foremost technique employed in the literature to examine the behaviour of

these two time-scale systems. In this approach, the system dynamics are approxi-

mated by two lower-order subsystems. The slow subsystem captures the dominant

phenomena assuming that the fast variables evolve infinitely many times faster, and

have settled down onto a manifold. The fast subsystem addresses the neglected phe-

nomena, and assumes that the slow variables remain constant. It has been shown that

the complete system behaviour can be approximated by the dynamics of the slow

subsystem provided the fast subsystem is uniformly asymptotically stable about the

manifold [6, 10]. These results of singular perturbation methods have made it the

most favourable model-reduction technique in the control literature[14].

The design of nonlinear tracking control laws for the slow variables using sin-

gular perturbation methods has received a lot of attention in the past. The typical

methodology is to design two separate controllers for each of the two subsystems,

and then apply their composite or sum to the full-order system. A tracking control

law is designed for the slow subsystem whereas a stabilizing controller is designed

for the fast subsystem. This is done to restrict the fast variables onto a manifold.

Global asymptotic tracking of the composite control structure is guaranteed only if

the manifold is unique. This manifold is the set of fixed points of the fast dynamics

expressed as a smooth function of the slow variables and the control inputs; hence

it is not always unique. To enforce the uniqueness condition, previous studies in the

literature have:

1. Assumed that the system has a unique manifold[4, 8]

2. Considered nonlinear systems that have a unique manifold. This is satisfied by

two time-scale systems that are nonlinear in the slow states and linear in the fast

states[11]

For a general class of nonlinear systems such as aircraft, approximate approaches

that guarantee local stability have been proposed. One approach is to consider the

fast variables as control inputs for the slow subsystem. Reference[12] used this

approach to design nonlinear flight test trajectories for velocity, angle-of-attack,

sideslip angle and altitude by using the fast angular rates as the control variables.

This control was augmented with an outer-loop controller that determines the con-

trol surface deflections needed to ensure that the angular rates track the output of

the inner-loop. More recently the same concept has been employed for the control

of generic reentry vehicles[7]. Another approach proposed in Reference[16] consid-

ered the general class of nonlinear singularly perturbed systems and computed local

approximations of the manifold that helped conclude local stability for the complete

system.

All of the approaches discussed above demonstrate slow state tracking either lo-

cally or globally by restricting the fast states, and, they address the output tracking

problem for two time-scale systems with fast actuators. But for systems whose dy-

namics inherently possess different time-scales, both the slow and the fast states
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constitute the output vector. For example, during air combat maneuvering an air-

craft is typically required to track a fast moving target while regulating speed (slow

variable) and/or one or more kinematic and aerodynamic angles. In this case the fast

states cannot be restricted to simply stabilize onto a manifold. The reduced-order

approach therefore appears to be inadequate for a general class of output track-

ing problem. Reference[1] formulated optimal control laws to accomplish fast state

tracking using invariant measures for systems with oscillatory fast dynamics.

In this paper, state feedback control laws are developed for a general class of non-

linear singularly perturbed systems to accomplish slow and fast state tracking simul-

taneously. The paper makes two major contributions. First, the approach developed

here employs the reduced-order technique without imposing any assumptions about

the fast manifold. This is done by extending the previous work of the authors[16] so

as to not require computation of the manifold. Second, global exponential tracking

is proved using the composite Lyapunov approach[10]. From the stability analysis

it is shown that this approach applies to all classes of singularly perturbed systems,

with the global exponential stabilization results of a class of singularly perturbed

systems being a special case[3]. Additionally, the technique is independent of the

scalar perturbation parameter and an upper bound on this parameter is derived as a

necessary condition for stability results to hold. These results are demonstrated by

simulation for a nonlinear, coupled, six degree-of-freedom model of the F/A-18A

Hornet.

The paper is organized as follows. Section 2 mathematically formulates the con-

trol problem and briefly reviews the necessary concepts for model reduction from

geometric singular perturbation theory. Control laws and the main results of the pa-

per are detailed in Section 3. Section 4 presents simulation results, and conclusions

are presented in Section 5.

2 Problem Formulation and Model Reduction

The following nonlinear singularly perturbed model represents the class of two time-

scale dynamical systems addressed in this paper

ẋ = f(x,z)+ g(x,z)u (1)

ε ż = l(x,z)+ k(x,z)u (2)

y =

[

x

z

]

(3)

where x ∈ R
m is the vector of slow variables, z ∈ R

n is the vector of fast variables,

u ∈ R
p is the input vector and y ∈ R

m+n is the output vector. ε ∈ R
+ is the singu-

lar perturbation parameter that satisfies 0 < ε << 1. The vector fields f(.),g(.), l(.)
and k(.) are assumed to be sufficiently smooth and p ≥ (m+ n). The control objec-

tive is to drive the output so as to track sufficiently smooth, bounded, time-varying

trajectories, such that x(t) → xr(t) and z(t) → zr(t) as t → ∞.
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2.1 Reduced-Order Modeling

The singularly perturbed model considered in Eqs.1,2 is expressed in the slow time

scale t. In this time-scale the slow states evolve at an ordinary rate whereas the fast

states move at a rate of O
(

1
ε

)

. This system can be equivalently expressed in the fast

time-scale τ such that the fast states evolve at an ordinary rate and the slow variables

move slowly at a rate of O(ε)

x′= ε [f(x,z)+ g(x,z)u] (4)

z′= l(x,z)+ k(x,z)u (5)

where ′represents a derivative with respect to τ = t−t0
ε and t0 is the initial time. Ge-

ometric singular perturbation theory[6] examines the behaviour of these singularly

perturbed systems by studying the geometric constructs of reduced-order models

obtained by substituting ε = 0 in Eqs.1,2 and Eqs.4,5. This results in the Reduced

Slow Subsystem

ẋ = f(x,z)+ g(x,z)u (6)

0 = l(x,z)+ k(x,z)u (7)

and the Reduced Fast Subsystem

x′= 0 (8)

z′= l(x,z)+ k(x,z)u (9)

The reduced slow subsystem is a locally flattened space of the complete system

(Eqs.1,2). Since the vector fields were assumed to be sufficiently smooth there ex-

ists a smooth diffeomorphism that maps the complete system onto this locally flat-

tened space. The set of points (x,z,u) ∈ R
m ×R

n×R
p is a smooth manifold M0 of

dimension m+ p that satisfies the algebraic Eq.7:

M0 : z = Z0(x,u) (10)

This set of points is identically the fixed points of the reduced fast subsystem (Eq.9).

Thus the manifold M0 is invariant. The flow on this manifold is described by the

differential equation

ẋ = f(x,Z0(x,u))+ g(x,Z0(x,u))u (11)

Fenichel[6] proved that the dynamics of a singularly perturbed system of the form

represented in Eqs.1,2 is constrained within O(ε) of Eq.11 if the reduced fast sub-

system is stable about M0. If the dynamics of Eq.11 are locally asymptotically

stable about the manifold, then it can be concluded that the complete system is

also locally asymptotically stable. Global asymptotic stability conclusions about the

complete system can only be made if the manifold is unique, which is a result from

differential topology and center manifold theory [6].
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3 Control Formulation and Stability Analysis

The central idea in the development is the following. If the manifold is unique and

an asymptotically stable fixed point of the reduced fast subsystem, the complete

system follows the dynamics of the reduced slow subsystem globally. Therefore, for

a tracking problem addressed in this paper it is desired that this manifold lie exactly

on the desired fast state reference for all time. This condition can be enforced if the

nonlinear algebraic set of equations is augmented with a controller that enforces

the reference to be the unique manifold. Additionally, this controller should also be

capable of simultaneously driving the slow states to their specified reference. These

ideas are mathematically formulated and analyzed in the following subsections.

3.1 Control Law Development

The objective is to augment the two time-scale system with controllers such that

the system follows smooth, bounded, time-varying trajectories [xr(t),zr(t)]
T . The

first step is to transform the problem into a non-autonomous stabilization control

problem. Define the tracking error signals as

e(t) = x(t)−xr(t) (12)

ξ (t) = z(t)− zr(t) (13)

Substituting Eqs.1,2, the tracking error dynamics are expressed as

ė = f(x,z)+ g(x,z)u− ẋr � F(e,ξ ,xr,zr, ẋr)+ G(e,ξ ,xr,zr)u (14)

εξ̇ = l(x,z)+ k(x,z)u− ε żr � L(e,ξ ,xr,zr,ε żr)+ K(e,ξ ,xr,zr)u (15)

The control law is formulated using the reduced-order models for the complete sta-

bilization problem, which is obtained using the procedure developed in Section 2.

Reduced Slow Subsystem

ė = F(e,ξ ,xr,zr, ẋr)+ G(e,ξ ,xr,zr)u0 (16)

0 = L(e,ξ ,xr,zr,0)+ K(e,ξ ,xr,zr)u0 (17)

Reduced Fast Subsystem

e′ = 0 (18)

ξ ′ = L(e,ξ ,xr,zr,z
′
r)+ K(e,ξ ,xr,zr)(u0 + u f ) (19)

It is known that the fast tracking error ξ will settle onto the manifold that is a func-

tion of the error e and control input u, which may not necessarily be the origin.

To steer both errors to the origin, the control input must be designed such that the

origin becomes the unique manifold of the reduced slow system (Eqs.16,17). There-

fore, the slow controller u0 is designed to take the form
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[

G(e,ξ ,xr,zr)
K(e,ξ ,xr,zr)

]

u0 = −

[

F(e,ξ ,xr,zr, ẋr)
L(e,ξ ,xr,zr,0)

]

+

[

Aee

Aξ ξ

]

(20)

where Ae and Aξ specify the desired closed-loop characteristics. With this choice of

slow control, the reduced fast subsystem becomes

e′ = 0 (21)

ξ ′ = L(e,ξ ,xr,zr,z
′
r)−L(e,ξ ,xr,zr,0)+ Aξ ξ + K(e,ξ ,xr,zr)u f (22)

To stabilize the fast subsystem, the fast control u f is designed as

[

G(e,ξ ,xr,zr)
K(e,ξ ,xr,zr)

]

u f =

[

0

L(e,ξ ,xr,zr,0)−L(e,ξ ,xr,zr,z
′
r)

]

(23)

Thus, the composite control u = u0 + u f satisfies

[

G(e,ξ ,xr,zr)
K(e,ξ ,xr,zr)

]

u = −

[

F(e,ξ ,xr,zr, ẋr)
L(e,ξ ,xr,zr,z

′
r)

]

+

[

Aee

Aξ ξ

]

(24)

assuming that the rank of

[

G(.)
K(.)

]

≥ (m+ n).

The complete closed-loop and reduced slow subsystem for this control law are

given as

ė = Aee (25)

εξ̇ = Aξ ξ . (26)

and

ė = Aee (27)

0 = Aξ ξ . (28)

respectively. Observe that with the proposed control law the nonlinear algebraic set

of equations (Eq.17) have been transformed to a linear set of equations (Eq.28).

With the proper choice of Aξ , it is guaranteed that ξ = 0 is the unique manifold for

both the complete and the reduced slow subsystems. Furthermore, this manifold is

exponentially stable as can be deduced from the reduced fast subsystem

e′ = 0 (29)

ξ ′ = Aξ ξ (30)

Remark 1. The control law proposed in Eq.24 is independent of the perturba-

tion parameter ε . Furthermore it is a function of z′r that implies that
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the reference trajectory chosen for the fast states must be faster when

compared to the reference of the slow states. Additionally, as for all

singular perturbation techniques to work the closed-loop eigenvalues

Ae and Aξ must be chosen so as to maintain the time-scale separation.

3.2 Stability Analysis

Complete system stability is analyzed using the composite Lyapunov function

approach[10]. Suppose that there exist positive definite Lyapunov functionsV (t,e)=
eT e and W (t,ξ ) = ξ T ξ for the reduced subsystems, with continuous first-order

derivatives satisfying the following properties:

1. V (t,0) = 0 and γ1||e||
2 ≤V (t,e) ≤ γ2||e||

2 ∀t ∈ R
+,e ∈ R

m,γ1 = γ2 = 1,

2. (∇eV (t,e))T Aee ≤−α1eT e, α1 = 2|λmin(Ae)|,
3. W (t,0) = 0 and γ3||ξ ||

2 ≤W (t,ξ ) ≤ γ4||ξ ||
2 ∀t ∈ R

+,ξ ∈ R
n,γ3 = γ4 = 1,

4. (∇ξW (t,ξ ))T Aξ ξ ≤−α2ξ T ξ , α2 = 2|λmin(Aξ )|.

Next, consider the composite Lyapunov function ν(t,e,ξ ) : R
+ ×R

m ×R
n → R

+

defined by the weighted sum of V (t,e) and W (t,ξ ) for the complete closed-loop

system

ν(t,e,ξ ) = (1−d)V(t,e)+ dW(t,ξ ), 0 < d < 1 (31)

The derivative of ν(t,e,ξ ) along the closed-loop trajectories Eqs.25,26 is given by

ν̇ = (1−d)(∇eV )T ė+ d(∇ξW )T ξ̇ (32)

ν̇ = (1−d)(∇eV )T Aee+
d

ε
(∇ξW )T Aξ ξ (33)

ν̇ ≤ −(1−d)α1eT e−
d

ε
α2ξ T ξ (34)

ν̇ ≤ −

[

e

ξ

]T [

(1−d)α1 0

0 d
ε α2

][

e

ξ

]

(35)

Following the approach proposed in Reference[3], add and subtract 2αν(t,e,ξ ) to

Eq.35 to get

ν̇ ≤−

[

e

ξ

]T [

(1−d)α1 0

0 d
ε α2

][

e

ξ

]

+ 2α(1−d)V + 2αdW −2αν (36)

where α > 0. Substitute in Eq.36 for the Lyapunov functions V (t,e) and W (t,ξ ) to

get

ν̇ ≤−

[

e

ξ

]T [

(1−d)α1 −2α(1−d) 0

0 d
ε α2 −2αd

][

e

ξ

]

−2αν (37)

If ε satisfies



242 A. Siddarth and J. Valasek

ε <ε∗=
α2

2α
(38)

and provided α1 >2α , then from the definitions of α2, α , and d it can be concluded

that the matrix in Eq.37 is positive definite. Then the derivative of the Lyapunov

function is lower-bounded by

ν̇ ≤−2αν (39)

Since the composite Lyapunov function lies within the following bounds

(1−d)γ1||e||
2 + dγ3||ξ ||

2 ≤ ν(t,e,ξ ) ≤ (1−d)γ2||e||
2 + dγ4||ξ ||

2 (40)

or,

γ11

∣

∣

∣

∣

∣

∣

∣

∣

[

e

ξ

]∣

∣

∣

∣

∣

∣

∣

∣

2

≤ ν(t,e,ξ ) ≤ γ22

∣

∣

∣

∣

∣

∣

∣

∣

[

e

ξ

]∣

∣

∣

∣

∣

∣

∣

∣

2

(41)

where γ11 = min((1−d)γ1,dγ3) and γ22 = min((1−d)γ2,dγ4), the derivative of the

Lyapunov function can be expressed as

ν̇ ≤−2αγ11

∣

∣

∣

∣

∣

∣

∣

∣

[

e

ξ

]∣

∣

∣

∣

∣

∣

∣

∣

2

(42)

From the definition of the constants γ11, γ22, and α , and invoking Lyapunov’s Di-

rect Method[9], uniform exponential stability in the large of (e = 0,ξ = 0) can be

concluded. Furthermore, since the reference trajectory xr(t) and zr(t) is bounded, it

is concluded that the states x(t)→ xr(t) and z(t)→ zr(t) as t → ∞. Since the matrix
[

G(.)
K(.)

]

is restricted to be full rank, examining the expression for u in Eq.24 it is

concluded that u ∈ L∞.

Remark 2. Recall that for the special case of state regulation the system dynamics

in Eqs.14,15 become autonomous. In such a case, the result of global

exponential stability is obtained with less-restrictive conditions on the

Lyapunov functions V (e), W (ξ ), and consequently ν(e,ξ ). Similar

conclusions were made in Reference[3] for the stabilization problem

of a special class of singularly perturbed systems where the control

affects only the fast states. Note that for the special class of systems

considered in Reference[3], the non-diagonal elements of the matrix

in Eq.37 are nonzero, and the bound on the parameter ε is slightly

different.

Remark 3. From Eq.37, a conservative upper bound for α is α < α1
2 , and conse-

quently ε∗ ≈ α2
α1

. Therefore, qualitatively this upper bound is indirectly

dependent upon the choice of the closed-loop eigenvalues.
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4 Numerical Simulation

The purpose of the example is to demonstrate the methodology and controller per-

formance for an under-actuated, nonlinear, singularly perturbed system. The system

studied is a nonlinear, coupled, six degree-of-freedom F/A-18A Hornet aircraft[5].

The combined longitudinal-lateral/directional maneuver requires tracking of the fast

variables, in this case body-axis pitch and roll rates, while maintaining zero sideslip

angle. Closed-loop characteristics such as stability, accuracy, speed of response and

robustness are qualitatively analyzed. The maneuver consists of an aggressive verti-

cal climb with a pitch rate of 25 deg/sec, followed by a roll at a rate of 50 deg/sec,

while maintaining zero sideslip angle. The Mach number and angle-of-attack are

assumed to be input-to-state stable. The initial conditions are a Mach number of

0. 4 at 15,000 feet, an angle-of-attack of 10 deg, and elevon angle of −11.85 deg.

All other states are zero. The F/A-18A Hornet model is expressed in stability axes.

Since it is difficult to cast the nonlinear aircraft model into the singular perturbation

form of Eq.1-2 , the perturbation parameter ε is introduced in front of those state

variables that have the fastest dynamics. This is done so that the results obtained for

ε = 0 will closely approximate the complete system behaviour (with ε = 1). This is

called the forced perturbation technique, and is commonly used in the aircraft liter-

ature [2, 12]. Motivated by experience and previous results, the six slow states are

Mach number M, angle-of-attack α , sideslip angle β and the three kinematic states:

bank angle φ , pitch-attitude angle θ , and heading angle ψ . The three body-axis an-

gular rates (p,q,r) constitute the fast states. The control variables for this model are

elevon δe, aileron δa, and rudder δr and are assumed to have sufficiently fast enough

actuator dynamics. The convention used is that a positive deflection generates a neg-

ative moment. The throttle η is maintained constant at 80%, because slow engine

dynamics require introduction of an additional time-scale in the analysis; this is a

consideration which is beyond the scope of this paper. The aerodynamic stability

and control derivatives are represented as nonlinear analytical functions of aerody-

namic angles and control surface deflections. Quaternions are used to represent the

kinematic relationships from which the Euler angles are extracted. The details of

these relationships are discussed in Reference[15].
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Results and Discussion

Simulation results in Figures 1-6 show that all controlled states closely track their

references. At two seconds the aircraft is commanded to perform a vertical climb,

and after eight seconds the pitch rate command changes direction and Mach num-

ber drops. The lateral/directional states and controls are identically zero until the

roll command is introduced at time equals 15 seconds. Observe that all of the states

asymptotically track the reference. Figure 2 shows that the elevon deflection re-

mains within specified limits[5] throughout the vertical climb, and the commanded

roll produces a sideslip angle which is negated by application of the rudder. The

aileron and the rudder deflections remain within bounds while the aircraft rolls and

comes back to level flight. The maximum pitch-attitude angle is 81 deg, maximum

bank angle is 81 deg (Figure 4), and the maximum sideslip error is ± 4deg. The

quaternions and the complete trajectory are shown in Figures 5 and 6 respectively.

From Figure 6, note that after completing the combined climb and roll maneuver,

the aircraft is commanded to remain at zero sideslip angle, roll rate, and pitch rate.

It then enters a steady dive with all other aircraft states bounded. The controller re-

sponse is judged to be essentially independent of the reference trajectory designed.

The robustness properties of the controller are quantified by the upper bound ε∗. For

this example, the design variables are d = 0.5, α1 = 10, α = 2, and α2 = 15, so the
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upper bound becomes ε∗ = 7.5. Therefore for all ε < ε∗ global asymptotic tracking

is guaranteed and in this case ε = 1.

5 Conclusions

A control law for global asymptotic tracking of both the slow and the fast states for a

general class of nonlinear singularly perturbed systems was developed. A composite

control approach was adopted to satisfy two objectives. First, it enforces the speci-

fied reference for the fast states to be ‘the unique manifold’ of the fast dynamics for

all time. Second, it ensures that the slow states are tracked simultaneously as desired.

Stability of the closed-loop signals was analyzed using the composite Lyapunov ap-

proach, and controller performance was demonstrated through numerical simulation

of a nonlinear, coupled, six degree-of-freedom model of an F/A-18A Hornet. The

control laws were implemented without making any assumptions about the nonlin-

earity of the six degree-of-freedom aircraft model. Based on the results presented

in the paper, the following conclusions are drawn. First, both positive and nega-

tive angular rate commands were seen to be perfectly tracked by the controller and

consistent tracking was guaranteed independent of the desired reference trajectory.

Second, throughout the maneuver the controller demonstrated global asymptotic

tracking even though the desired reference trajectory requires the aircraft to switch

between linear and nonlinear regimes. This robust performance of the controller was

shown to hold for all ε < ε∗ = 7.5. Third, all closed-loop signals were bounded and

the control surface deflections computed were smooth and within specified limits.

Fourth, this technique does not require the knowledge of the perturbation parameter

ε . This is an important consideration for systems such as aircraft, where quantifying

this parameter can be difficult.
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Motion Planning for a Fixed-Wing MAV 
Incorporating Closed-Loop Dynamics Motion 
Primitives and Safety Maneuvers 

Michael Gros, Moritz Niendorf, Alfred Schöttl,
 
and Walter Fichter

 1
 

Abstract. In the following a new two-staged motion planning algorithm with air-

craft safety guarantees for obstacle cluttered environments is presented. The first 

planning stage consists of a probabilistic roadmap global planner that implicitly 

accounts for kinematic constraints of the plant and generates waypoints. These are 

used as an orientation marker for the on-line sampling-based second planning 

stage incorporating motion primitives based on the closed-loop dynamics of a 

nonlinear 6 degrees of freedom model of a fixed-wing mini aerial vehicle (MAV). 

Limitations in turnaround time during on-line execution are accounted for by lim-

iting the planning depth of the tree. Safe trajectory traversing is assured with the 

introduction of safety maneuvers in the horizontal and vertical plane that have to 

be feasible at every node. Results of simulation runs are presented for a scenario 

including a narrow passage and an unknown obstacle. 
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1   Introduction 

Motion planning for fixed-wing MAVs in obstacle cluttered environments is a 

challenging task, especially when aircraft safety has to be assured continuously 

and in case of a high density of obstacles and narrow passages. Moreover, this be-

comes even more severe coping with unknown static and/or dynamic obstacles 

during runtime. The main purpose of this work is to combine the advantages of re-

cently introduced planning algorithms to a realistic real-time planning framework. 

To this end, improvements are introduced in the fields of planning safety due to 

safety maneuvers and the generation of motion primitives (MPs) with a closed-

loop model. Further, a tree-based local planner that combines advantages of depth-

first and breadth-first search techniques as well as the incorporation of local sensor 

information for obstacle avoidance is presented. 

A popular strategy to solve the planning task in obstacle cluttered environments 

is to decompose the motion planning problem into a coarse, discretized global 

planner, and a finer local planner that takes into account dynamic constraints [1]. 

Global planners employ roadmap-based representations whose query phase uses  

graph search algorithms, e.g. the A* algorithm [1], to produce a waypoint path 

connected with straight line segments. As representation of the dynamics of vehi-

cles planners often sample motion primitives in order to reduce computational ef-

fort [1,2,3]. Frazzoli [2] introduced the so called maneuver automaton, a finite 

state machine that interconnects two classes of motion primitives, namely trim tra-

jectories and maneuver trajectories. Hwangbo et al. [1] combined a grid-based 

global planner with a simple tree-based local planning framework and generated 

motion primitives for a fixed-wing UAV in 3D-slalom scenarios.  

Obstacle avoidance during runtime is crucial when unmanned aerial vehicles 

(UAVs) have to fly through dynamic environments. Thus it makes sense to di-

rectly embed range information such as from a laser range finder (LRF) or a radar 

distance sensor into the motion planner. Such an approach is reported in [4] and 

[5] in the framework of rapidly exploring random trees (RRTs) and potential func-

tions, respectively. Most safety measures considered in planning algorithms are 

applied to rotary wing MAVs [2,6]. The problem is more challenging in case of 

the nonholonomic constraints of a fixed-wing MAV. An incorporation of safety 

maneuvers for fixed-wing aircraft into the planning process cannot be found in 

current planning algorithms. 

In order to design an algorithm that is tailored to real-time application, the fol-

lowing measures were carried out: A modification of the global planner so that it 

can cope with restrictions on the flight path angle and heading difference angle; 

the capability of avoiding unknown static and dynamic obstacles is enhanced by 

supporting the local planner with available range sensor information. To provide a 

fixed turnaround time during a planning step of the local planner, the planning ho-

rizon and the number of nodes stored to be considered for the next planning step, 

are limited; safety maneuvers at any node of the planning tree must be considered. 

These points are functionalities that are added with the respect to the original work 

of Hwangbo et al. [1]. 
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The paper is outlined as follows. Section 2 gives a detailed description of the 

nonlinear closed-loop dynamics of the fixed-wing aircraft and the generation of 

motion primitives. The probabilistic roadmap based global planner is presented in 

section 3, the tree based local planner, including safety maneuvers and the simu-

lated LRF, is introduced in section 4. A simulation scenario with an unknown ob-

stacle and a narrow passage is discussed in section 5. Summary and outlook are 

given in section 6.    

2   Simulation Model and Motion Primitives Generation 

2.1   Problem Formulation  

For a nonlinear system, ,)0()),(),(( 0xxuxx == ttf$ where nR∈x represents a 

state in the state space X, x0 being the initial state at time t=0 and 
m

R∈u being 

the input to the system, motion planning can be stated as path planning in a state 

space with first-order differential constraints as opposed to the classical path plan-

ning problem that is formulated in the configuration space; a big advantage is the 

incorporation of kinematic and dynamic constraints of a system, i.e. the incorpora-

tion of finite accelerations in the simulation of a system in an obstacle cluttered 

environment can be crucial for collision avoidance due to the system’s inertia. 

The dimension of the configuration space C is the number of the degrees of 

freedom of a body, thus a configuration C∈q determines a rigid body’s position 

and attitude; the configuration q and its first order derivative are included in the 

state x. Constraints imposed on x by kinematic and dynamic bounds on the system 

and by static and moving obstacles can be expressed by defining a subspace 
nRX ⊆free  that contains all feasible states; moving obstacles are represented as 

static obstacles at time t, it is assumed that their trajectory is fully known. Con-

straints on the input u are covered by the subset m
RU ⊆ , leading 

to UttXt ∈∈ )();()( free ux are selected by a local planner. The system is run from 

the initial state x0 until the state reaches a terminal set
 
Xg. Associated to Xg

 
is the 

stopping time tg:=inf(t: xg ∈Xg). The purpose of this framework is to plan a trajec-

tory across an obstacle cluttered environment, thus for Xg
 
only position informa-

tion is specified.  

2.2   Simulation Model with Motion Primitives 

A nonlinear 6 degrees of freedom (6-DoF) model of a fixed-wing MAV is used for 

this work. Aerodynamic data for the model was generated using Digital 

DATCOM [7] and validated with flight data. The state vector x consists of the po-

sition in an Earth-fixed reference frame (x,y,z), Euler angles (φ,θ,ψ), body-fixed 

velocities (u,v,w) and the aircraft angular velocity vector (p,q,r). The open-loop  
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control input u to the system is represented by u
 
= (δa,δe,δr,δt), 

the subscripts indi-

cate aileron, elevator and rudder as well as throttle. Instead of the application of 

the open-loop input u over a specified time interval during the generation of Mo-

tion Primitives (MPs), a simulation with a closed-loop system is preferred due to 

its well-known stability advantages compared to an open-loop representation. As 

can be depicted from figure 1, flight path variables are chosen as reference signals 

rm
rr RUUt ⊆∈ ,)(r ; closing the loop, the dimension of the input vector can be  

reduced by one to mr=3, assuming that zero body-fixed lateral acceleration ay is 

desired. This is achieved via feedback of ay to the rudder input rδ . The closed-

loop system is now defined as 

,)0()),(),(( 0xxrxx == ttf$ ),,,( comcomcom Vγφ=r                         (1) 

where φcom is the commanded roll angle. For a small angle of attack α and sideslip 

angle β, φ  matches the bank angle µ. Thus, assuming φ ≈ µ, φ serves as the refer-

ence signal of the lateral motion. The commanded flight path angle γcom and the 
commanded absolute speed Vcom serve as reference signals of the longitudinal mo-

tion. The full feedback policy, including turn coordination and turn compensation, 

can be deducted from figure 1. For motion primitive generation it is defined that 

the MAV should be capable to execute straight flights as well as turns at different 

turn rates, both with different flight path angles. Thus, the elements of r are  

limited to a finite number of values. The commanded absolute speed Vcom is held 

constant while providing nφ different φcom and nγ different γcom, resulting in nr = nφ · 

nγ  different sets of r, namely ri, with i=1…nr.  

 

Fig. 1 Structure of the nonlinear closed-loop dynamics of our fixed-wing MAV. 

2.3   Motion Primitives Generation 

The sampling of motion primitives (MPs) decomposes the input of a given dy-

namic system into a finite number of control actions. The consecutive execution of 

MPs is determined by an optimization process in the local planner. Several ways 
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to generate motion primitives exist including the recording of open-loop actions 

by a pilot during a maneuver or the application of an optimal control policy as de-

fined in [2].  

This work presents a straight forward way of MP sampling from the closed-

loop system (1) in the interval t ∈  (ts,tf] with the initial state x(ts)=xs represented 

by rs=ri(ts). In contrast to the work of Frazzoli [2], this work introduces two dif-

ferent classes of MPs, namely steady-state MPs and non steady-state MPs which 

apply for small changes in the heading angle χ. Steady-state MPs begin and end in 

steady states, whereas in non steady-state MPs at least one boundary state is not a 

steady-state
1
. For steady-state MPs a constant reference signal r(t)= ri=const. is 

applied during the interval t ∈  (ts,tf]. The maximum of the settling time tset of the 

underlying controllers for φ,γ assures that the commanded reference almost has 

been reached, thus leading to 

),,max(,)(lim,)(lim γφγφ γγφφ
γφ

sssetcom
tt

com
tt

tttee
ss

=<−<−
→→

 (2) 

where e defines the maximum allowed controller error. As a consequence, every 

motion primitive ends in a quasi steady state 0| ≈ff xx $ , excluding position; un-

steady transitions between two consecutive MPs are prevented. The final state xf  

can be associated with vector rf =ri(tf) and for the initial state of a MP, xs is asso-
ciated with rs=ri(ts). With a limitation time of the upper boundary tmax and lower 

boundary tmin to generate motion primitives of roughly the same length, tf is con-

strained to tmax ≥ tf ≥ tmin.  

With the steady-state MP class small heading changes cannot be realized; to 

enable those maneuvers in the horizontal plane (γs=γf=0°), non steady-state MPs 

are introduced. Figure 2 depicts non-steady state MP generation. From an initial 

roll angle of φs(ts)=0°, a reference roll angle φsub(t1)≠ 0° is commanded in the in-

terval ts<t1≤ tnode, followed by the application of φf (t2)=0° with tnode<t2≤ tset(φ=0°).  

The members of φsub are chosen from φcom in such a way that only reference signals 

that command a small φ are taken in order to produce a small Δχ. A number of nsub 

steady-state MPs with φs(ts)=0° and φf (tf)=φsub  are used for the generation of non-

steady-state MPs. Those MPs are then divided into nnode different nodes at time in-

tervals of tnode=tset(φsub)/nnode leading to nnode-1 non steady-state intermediate nodes 

per MP. Subsequently nnode-1 simulations are conducted with φcom(t1) =φsub  to each 

intermediate node, which are placed in intervals of tnode × j, j=1…nnode-1; from 

each intermediate node, the horizontal roll-angle reference signal φcom(t2)=0° is 

applied until eq. (2) is satisfied.  
 

                                                           
1  MP naming was slightly changed compared to [2] due to differences in the classification. 

The set of steady-state MPs contains both trim and maneuver MPs, whereas non steady-

state MPs represent pieces for maneuvers to refine the maneuver library. MPs based on 

constant, respectively piecewise constant controller references were used rather than op-

timal control laws as in [2]. 
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Steady state node, φ = 0°

Intermediate node

Steady state node, φ ≠ 0°

tnode,1

tnode,2

tnode,3

tnode,4

tnode,5=tf (φ ≠ 0)

 

Fig. 2 Non steady-state motion primitive generation for the MAV with n
node

=5. n
unsteady

=9 
non-steady-state MPs result from 1 steady-state MP.  

Each node to node connection in this class is considered as a single non steady-

state MP in the tree based planner, resulting in nunsteady =2· nnode -1 MPs with a non 

steady initial and/or final state for each member of φsub. Assuming that for the ini-

tial states xs and end states xf of steady-state MPs any combination of reference 

vectors ri with i=1…nr can be applied, the total number ntotal of steady-state and 

non-steady state MPs to generate is defined by ntotal=nr
2 
+ nsub ·(nunsteady-1). 

3   Probabilistic Roadmap Global Planner 

A common strategy to solve the motion planning problem in obstacle cluttered en-

vironments is the decomposition into a coarsely discretized global and a finer dis-

cretized local planning problem. The geometric representation of obstacles in both 

the global and the local planner is provided by axis aligned bounding boxes in the 

Earth-fixed reference frame, straight line segments in the global planner are sur-

rounded by oriented bounding boxes (OBB). In this setup collision detection can 
be implemented efficiently using the method provided in Ref. [8]. 

 

Algorithm 1. PRM Roadmap Construction (nNodes) 

1: nodes ← sample nNodes random configurations 

2: for all nodes  

3:            find k_nearest nearest neighbors 

4:            if collision check and γ ≤  γ
max

 then  roadmap ← edge; end; 

 
A probabilistic roadmap (PRM) algorithm is used as global planning method to 

produce waypoints that are connected with straight segments for the local planner 

a priori. Reference [9] delivers an introduction to the basic PRM algorithm. As we 
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see the PRM algorithm can be extended to geometric constraints for nodes and 

edges to implicitly satisfy the kinematic constraints of the aircraft. 

The PRM algorithm is divided into a construction and a query phase. As can be 

seen from algorithm 1, roadmap construction begins with the sampling of nNodes 

different random configurations, in our case only the position (x,y,z) of a node 

with Euclidean distance as metric is considered, since the system representation 

can be seen as a mass point representation for that purpose. For every node a near-

est neighbor search is conducted. The node structure is realized by a kd-tree repre-

sentation [10]. Several constraints have to be satisfied during the construction 

phase before an edge connection between two nodes is possible: 

• Edges included in the surrounding OBB are checked for collision to provide a 

collision free volume for the execution of the local planner. 

• A constrained flight path angle γmax of the MAV requires a constraint on the 

slope of the edge namely γ ≤ γmax.  

 

Algorithm 2.  PRM Roadmap Query   

1: PRM Roadmap Construction (q0,qg) 

2: shortest path(q0,qg) ← modified A* between q0,qg 
with Dubins metric 

 

Algorithm 2 depicts the necessary steps in the query phase. Initial configuration  

q0= (x0,y0,z0,χ0,γ0,φ0), i.e. position, heading, flight path angle, and the goal con-

figuration qg= (xg,yg,zg,χg,γg,φg), with a given position and arbitrary χg, γg  have to 

be connected to their k nearest neighbors in the roadmap; the roll angle φ is left 

arbitrary in the entire global planning process. As a second step a modified A* 

graph search algorithm is applied to find the shortest path from q0 to qg in the 

roadmap. The basic A* algorithm [11] is an informed search algorithm that is 

proven to be complete. The modification made for this algorithm further adds 
flight path constraints limiting  

• the maximum allowed heading difference Δχmax due to a limited turning radius 

and 

• the minimum length of a straight line segment Lmin by approximating it as the 

length of an arc piece by Lmin = 2·Δχmax · Rmin · csafety, where csafety is a safety fac-

tor and Rmin is the turning radius determined by the motion primitive with the 

smallest turning radius. 

Only if these constraints are satisfied the specific node is included into the A* 

graph search and the heuristic in the form of a modified Dubins heuristic, as will 

be described below, is evaluated.  

For a vehicle with minimum turning radius in the plane it can be proven that  

the shortest connection of a start and a goal configuration is always a part of a set 

with 6 path types, with mostly 3 segments consisting of arcs and straight seg-

ments. Those paths are referred to as Dubins paths. Here an analytical solution for 

Dubins paths from an initial configuration with position and heading to a goal po-

sition with the final heading left arbitrary is used [12]. An extension to the Dubins 
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heuristic for an approximation of the trace in a 3-dimensional workspace is pre-

sented in Ref. [1] and is used in this work in a modified form, as can be seen in al-

gorithm 3. Additionally, after the Dubins heuristic value for the horizontal plane 

Lh,Dubins is obtained, a check of the flight path angle constraint γmax is conducted in 

step 3 of the algorithm. As long as this constraint is not satisfied, full turns with 

the minimum turning radius Rmin of the MAV are added to the Dubins heuristic 

value. As modification to the algorithm of Ref. [1], more accurate trace lengths for 

a fixed-wing aircraft are obtained by adding the height difference Δz=zg-zi to the 

Dubins heuristic for the vertical plane Lv,Dubins  in step 4. 

 

Algorithm 3. 3D Dubins Metric (q1,q2) 

1: L
h,Dubins  

←  Compute Dubins Heuristic in Horizontal Plane (q1,q2) 

2: h ←  L
h,Dubins

 

3: while Δz/h  ≥  sin(γ
max

) do h←h + 2π ×  R
min

; end; 

4:  L
v,Dubins  

←  h + Δz 

5: L
3D,Dubins ← L

h,Dubins
+ L

v,Dubins  
 

 

It is possible that the modified Dubins heuristic overestimates the distance with 

the consequence that the A* triangle equation does not hold; thus an optimal solu-

tion is not guaranteed. However, in interaction with the probabilistic roadmap al-

gorithm the modified Dubins heuristic seems to produce a better path with respect 

to the kinematic constraints of a fixed-wing aircraft than the admissible Euclidean 

distance heuristic; a detailed study evaluating this issue is still due.  

Once A* returns a shortest path according to the 3D Dubins heuristic as a se-

quence of nodes from q0 to qg, an additional post processing step is executed that 

attempts to connect non-neighbored nodes directly to each other. This automati-
cally leads to an optimization of the path length, i.e. a shortened path, if a connec-

tion is collision free and feasible with respect to the above mentioned constraints.  

4   Tree-Based Local Planner with Motion Primitives 

This new local planner builds a tree from an initial state x0 to a goal region around 

the goal state xg, with only position specified a priori, by the interconnection of 

MPs. PRM waypoints serve as intermediate goal regions which are represented by 

a sphere with a certain radius around xg. Due to the discrete nature of MPs it is un-
likely that a goal state is reached exactly; however, there is a trade-off. A too nar-

row goal region decreases the chance that a waypoint is hit; a too wide goal region 

decreases the guidance “property” of waypoints for the local planner in an obsta-

cle cluttered environment. A goal region of the size less than the minimal turning 

radius has been found acceptable through simulation of the model considered here.  

The planner performs an informed search based on a partially greedy cost func-

tional J as opposed to Ref. [1] where a planner based on a greedy search is used. It 

is desired to obtain depth-first behavior in the free space that results in fast search-

space exploration and a breadth-first exploration when close to obstacles or in the 
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proximity of a goal region to minimize the probability to end up in a local mini-

mum. The structure of the local planner is given by algorithm 4.  

From chapter 3 it is clear that every node in the local planner can be sufficiently 

represented in the configuration space with q=(x,y,z,χ,γ,φ), even though the sys-

tem of eq. (1) is defined in the state-space. For a MP that starts at qs, ends at qf 

and an intermediate goal node qint from the PRM path, the cost functional J is de-

fined as  

),,(),(),()( obsfintffsf qqqqqqq hgfJ ++=
                            

(3) 

where f(qs,qf) is the trace length of the MP and g(qf,qint) is the greedy cost-to-go 

with the 3D Dubins heuristic between qf and qint. The term h(qf,qobs) represents the 

value of a potential function in the line of sight of the MAV between the position 

coordinates of qf  and an obstacle position qobs. In the potential function  

))1|/(|1(max),( obsf,obsf −−⋅= qqqq jLRFLRFKh ,                        (4) 

qobs is determined by the simulation with a laser range finder (LRF) similar to Ref. 

[4], equipped with a beam of limited range dLRF, variable pitch angle Δθ and  

azimuth angle Δψ. The LRF simulation produces a grid of size j at each end con-

figuration qf of a MP with distance information to the next obstacles that intersect 

with the beam due to its pivoting; for simplicity reasons an ideal sensor was as-

sumed without false hits or latency. The potential function always accounts for the 

worst case, thus the obstacle position qobs with smallest distance to qf was chosen 

from the grid.  

In the tree building process, every MP is seen as a new branch of the tree origi-

nating from a node and will be incorporated into the planning process only if one 

of four subsequent safety maneuvers of the MAV in the horizontal or vertical 

plane is possible and if no collision occurs. Safety maneuvers were not simulated 

explicitly but represented by OBB placeholders and collision checked for every 

MP. In total there are two safety maneuvers for each the horizontal respectively 

the vertical plane. It is assumed that a safety maneuver is conducted at the edge of 

the flight envelope with a minimum turning radius that is by far lower than the 

minimum radius of steady-state MPs.   

Similar to the A* algorithm this planner stores a list of nodes, named open_list, 

sorted in the order of their cost. Conversely to A*, this list is finite to limit the 

computational effort at each cycle. Only nodes that are members of the open_list 

are candidates for a further expansion of the tree. The node with the lowest cost is 

labeled current_node and thus is added to the tree. In the next step, the cost-

functional of the nodes at the end of the branches of the current_node is evaluated. 

Subsequently, all collision-free nodes are added to the open_list which is then 

sorted again (line 9-10). If the size of open_list is bigger than allowed, nodes with 

the worst cost functional are removed.  Therefore the size of the open_list is al-

ways a trade-off between computational effort and a convergence to the optimal 

solution since it is proven that the basic A* algorithm is complete [10].  
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Algorithm 4. Tree of Motion Primitives (simplified algorithm) 

1: current_node ← open_list(1) ← node
MAV

 ← initial node at state x0;  age = 0;  

2: while not in goal area around xg;  

3:       if in local goal area around qint 

4:             qint, local goal ← next waypoint from PRM; 

5:             open_list: for all nodes: calculate cost J  end; sort; limit size; 

6:             current_node ← open_list(1);  

7:       else 

8:             age ← age +1; 

9:             current_node: for all branches: calculate cost J; collision/safety maneuver check; end;  

10:           open_list: save all feasible nodes of branches (from line 9); sort; limit size; 

11:           current_node ← open_list(1);             

12:           check if local or global goal area is reached; 

13:     if age-age
old

 > planning_depth 

14:           path←recursively find path from current_node to current MAV configuration node
MAV

;  

15:           node
MAV  
← move MAV to the next steady-state node; 

16:           if node
MAV  

= current_node then execute safety_maneuver; end; 

17:           open_list: delete branches whose origin nodes possess timestamp  ≤  age; 

18:           age
old 
← age; 

19: end  

 

A limitation of the computation time is achieved by a limitation of the number 

of newly added motion primitives in each planning step. This is realized by the 

variable planning_depth. After reaching the planning_depth, the MAV trajectory 

is recalculated recursively in the tree from the node with the best value, i.e. cur-

rent_node, to the actual MAV node nodeMAV and the MAV is propagated to the 

next steady-state node (line 15). In case of a planning failure (line 16) a safety 

maneuver is executed. Parts of the tree that cannot be reached anymore by the 

MAV are pruned away.  

The use of a modified Dubins heuristic for the greedy part of the cost functional 

gives a more accurate estimation of the vehicle trajectory compared to the Euclid-

ean distance. This maximizes the influence of distance deviation and minimizes 

the deviation in vehicle orientation when farther away from the goal region to 

achieve a depth-first exploration in the free space; if the tree advances to a goal 

region in a narrow passage, the greedy cost-functional value of branches that pos-

sess a small deviation in orientation to the goal region will be lower and the lim-

ited length of the open_list causes a widening of the tree at the same hierarchy 

level which resembles breadth first behavior. The LRF provides local obstacle in-

formation that can be used in the repulsive potential to push the vehicle trajectory 

towards the free space Xfree when in the proximity of obstacles; MP that point to 

close obstacles are penalized heavily by the potential function and vice versa. 
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5   Simulation Test Runs 

For the motion primitive generation of the MAV a set of nr= 35 different reference 

vectors r were chosen as shown in table 1. To enable the aircraft to execute small 

heading changes in the range of 1°≤ Δχ ≤ 15°, the number of intermediate nodes 

for non steady-state MPs was chosen to nnode=5, resulting in nunsteady=9 non steady-

state MPs per member of φsub=[-20°,-10°,10°,20°] with nsub=4 members.  

This led to a total number of ntotal=1257 applicable MPs; 170 MPs are excluded 

due to a violation of the time constraint tmax, leading to 1087 MPs that have to be 

administered and applied by the tree-based local planner.  

Symmetry properties of the aircraft dynamics in the x-z plane could be used to  

reduce the MP set; a saving in cost functional evaluations due to the x-z plane 

symmetry could only be achieved for symmetric flight initial conditions,  

i.e. φ(ts)=0°, and only for the greedy part of J. Due to the minimal achievable sav-

ings the MP set is not using symmetry properties.  

Constraints to the global planner were chosen to γmax=10°,Δχmax=60°, 

Rmin=38m. LRF parameters were set to dLRF=80m, Δθ = [-20°, 20°], Δ ψ=  

[-45°,45°].  

Table 1 Reference Signal Discretization 

φcom   -45° -20° -10° 0° 10° 20° 45° 

γcom  -15° -10° 0° 10° 15°  

Vcom    20m/s    

 

Fig. 3 The PRM solution of an exemplary scenario with a narrow passage in the order of 

Rmin. Due to the narrow passage, PRM parameters had to be chosen to nNodes=10000, 

nNeighbour=500 to provide a dense sampling of the map. 
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(a) Local planner: time = 3 x planning_depth (b) Local planner: time = 4 x planning_depth

Old node_MAV

Current node_MAV

Current best node

Old Waypoint

Current Waypoint

 

(c) Local planner: goal xg reached (d) Local planner: solution in the

presence of an unknown obstacle (red)
 

Fig. 4 Every figure shows the whole tree including any former members of open_list. Free 

space is traversed fast by the planner. The tree grows in breadth in front of the narrow pas-

sage, as shown in figures (a)-(b). Firstly, in (a) the best node lays outside of the narrow pas-

sage, but in (b) a path inside the narrow passage is explored that has the best value for the 

cost functional J. Afterwards it is switched to the next waypoint. Figure (c) depicts the fin-

ished motion plan from x0 to xg with planning_depth=10, max(open_list)=20. A solution of 

the local planner in the presence of an unknown obstacle (red) is shown in figure (d). The 

path generated by the PRM planner is the same as in figure 3.  

A simulation in an urban environment with focus on narrow passages and un-

known obstacles was chosen to demonstrate the capabilities of the introduced 

planning framework.  

Figure 3 shows the PRM solution and the smoothed path in an environment 

containing a narrow passage between buildings with a passageway width less than 
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Rmin. The number of samples nNodes and the nearest neighbor parameter 

k_nearest have to be set to relatively high values compared to wider passages to 

find a way through the narrow passage. 

Planning steps of the local planner are illustrated in figure 4a-c. It can be seen 

that depth first behavior is achieved in the free space, in contrary to the entrance of 

the narrow passage where it takes several steps and the tree widens until the next 

waypoint inside the narrow passage is reached. The safe traversing through the 

narrow passage is only possible since the upward vertical safety maneuver is al-

ways feasible at that time; it guarantees a recovery of the MAV even if the narrow 

passage is blocked by an unknown obstacle during runtime. The complete trajec-

tory for the scenario is shown in figure 4c.  

Figure 4d depicts the same scenario with an additional unknown static obstacle 

blocking the path to the second PRM waypoint. It can be seen that the obstacle is 

avoided and as soon as the current_node has reached the goal area of the second 

PRM waypoint, the cost is calculated for the next waypoint and thus, the motion 

plan is optimized ignoring the blocked waypoint. An advantage over pure depth-

first planners is the usability of the node information stored in the open_list. In the 

example, the obstacle is passed on the right side even though a passageway to the 

left was proposed first due to a better value of the partial greedy cost functional J.  

6   Summary and Outlook 

In this work a two-staged motion planner with safety maneuvers based on motion 

primitives has been demonstrated including a straight forward method of motion 

primitive generation for closed-loop fixed-wing MAVs. The introduced frame-

work is a step towards a computationally inexpensive on-line planner for small 

UAV that is able to function safely in a varying urban environment. A modifica-

tion of a PRM based planner and a new tree based planner for safe trajectory trav-

ersing of fixed-wing aircraft were designed and demonstrated in an environment 

that included a narrow passage and the avoidance of an unknown obstacle.  

More detailed parameter studies are being performed for the local planner and 

the interaction of the global planner with the local planner. So far, results show 

good performance, including acceptable runtime behavior.  
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Novel Dynamic Inversion Architecture Design 
for Quadrocopter Control 
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Sebastian Klose, and Alois Knoll
*
 

Abstract. This paper presents a novel controller architecture for a quadrocopter. A 

two-loop controller using dynamic inversion is designed that allows direct com-

mands for position and heading angle. The inner loop controls the body-fixed an-

gular rates. And the outer loop achieves the position control. With this structure, 

the position dynamic equation appears in an elegant form. The derived controller 

is capable of decoupling the strongly coupled dynamics of the quadrocopter, 

maximizing the transmission bandwidth of the position control, as well as elimi-

nating the singularity caused by the attitude control (i.e. pitch angle at 90 degree). 

Pseudo-control hedging is applied in the position loop to account for limitations, 

saturations, actuator dynamics and delay in the inner loop. The effectiveness of the 

designed controller is demonstrated by an implementation on a quadrocopter 

equipped with an ARM7 onboard processor.  

Nomenclature 

B   Body-fixed frame 

W   World frame, deduced from NED frame with user-defined x-axis 

WBBW MM ,  Transformation matrices between B frame and W frame 

NML ,,  The moments around x, y and z axis of B frame, respectively 

rqp ,,  Angular rates around x, y and z axis of B frame, respectively 

( )Wr
j

 Position vector denoted in W frame 

( )WWV
j

 Velocity vector defined w.r.t. W frame denoted in W frame 
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( )WW

Wa
j

 Acceleration vector defined w.r.t. W frame denoted in W frame 

( )WWW

Wa$j  Acceleration vector differentiated w.r.t. W frame 

Wγ
j

  Gravitational vector in W frame 

Bf
j

  Specific force vector in B frame, accelerometer output. 

T  Total thrust of the quadrocopter 

1   Introduction     

Recent technological progress in low-cost MEMS-based sensors, actuators and en-

ergy storage devices enables the development of miniature vertical take-off and 

landing (VTOL) systems. The quadrocopter is one of the most preferred types for 

many civil applications as well as research platforms. There are many advantages, 

like easy construction and steering principle, VTOL and hovering ability. However, 

because of the nonlinear dynamic behavior, the control and guidance of these vehi-

cles is a subject of research, especially in applications such as search and rescue, 

surveillance, inspection, and so on. For these applications, high stability, high pre-

cision hovering ability, high bandwidth, and high maneuverability are important. 

Previous effort on nonlinear dynamic inversion control for Micro Aerial Vehi-

cles (MAV) include three-loop design corresponding to inversion of rotational, at-

titude and path dynamics in separated cascaded loops[1]. A more common con-

troller architecture is two-loop design [2]-[4], where the outer loop is the position 

control and the inner loop provides attitude control, as illustrated in Fig. 1. Both 

control loops have relative degree 2 dynamics. But they have a limited bandwidth 

and a singularity occurs at a Pitch angle of 90° when Euler angles are used [2]. 

 

Fig. 1 Conventional two loops control architecture 

The focus of this work is on the design of a baseline controller using the non-

linear dynamic inversion method. The system is capable to utilize the high band-

width of the system and full actuator range without instability caused by actuator 

saturation. It can thus be used as a solid basis to apply augmented control philoso-

phies, e.g. adaptive control. In addition to the functional requirement, the control  
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algorithm has to be implemented in the embedded hardware and has to fulfill real-

time requirements while limited memory and onboard processing capacity have to 

be considered. Detailed derivation of the control law design is illustrated, followed 

by the flight test data to verify the design. For the flight test, vision sensors are 

used to aid the inertial sensors embedded onboard. Details about the visual proc-

essing and the experimental setup can be found in [2]. Specific sensor data fusion, 

trajectory planning and protection mechanisms for takeoff and landing are inte-

grated for the flight test. 

2   Dynamics of the Quadrocopter     

One well-known inherent quadrocopter characteristics is the strong coupling in 

pitch-yaw-roll. A tradeoff often has to be made between maximization of the sys-

tem bandwidth and dynamic decoupling. Both problems can be confronted in an 

elegant way if we look at the reaction of the quadrocopter on changes of rotational 

rates of the propellers as follows: 

 

Fig. 2 Signal flow diagram of the quadrocopter dynamics 

As shown in Fig. 2, a change in the rotational rate of each propeller results in 

changes in the thrust of each motor, which gives the change of total thrust and the 

body-fixed rotational moments. These moments result in body fixed angular ac-

celerations, and consequently the angular rates. Then the angular rates p, q and the 

change in the total thrust yield a change in the acceleration with respect to the 

world frame. The change in acceleration in the end results in change of the posi-

tion by three integrations.  

The resulting change in acceleration in the body frame consists of 2 integra-

tions in the xB-yB-plane, whereas in the direction of the zB-axis acceleration di-

rectly results from the change in thrust. Different axes of the position dynamics 

are coupled with different dynamic orders. It is difficult to perform exact input-

output feedback from position to the motor thrusts. A dynamic inversion of the 

position dynamics with relative degree 3 however is possible. 

As can be seen in the signal flow diagram in Fig. 2, attitude angles are not in-

cluded, but only implicitly appear in the transformation matrix. The inputs for the 

translation dynamics extend to change of acceleration, i.e. angular rate and change 

of thrust. In other words, position can be controlled by a more direct input, which  
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certainly increases the bandwidth of the position control. Thus the dynamic inver-

sion of the position dynamics with relative degree 3 is dynamically correct, and 

the complexity of the dynamic inversion is manageable with potential increase in 

the bandwidth. 

For the yaw control, there will be coupling from position dynamics if the azi-

muth angle is used as the control variable. From Fig. 2, the yaw dynamics, how-

ever, is not inherently coupled with the translational dynamics. Hence a simple 

way to solve the problem is to control the yaw rate directly, but with an integral 

part in the error controller. Considering the drift rate of the gyro (200º /hour), the 

heading can be well controlled, without coupling with the translational dynamics. 

In summary, the new control structure is an outer loop position control of rela-

tive degree 3 and an inner loop rate control of relative degree 1. In the next chap-

ter, the mathematic derivation for the dynamic inversion is explained in detail. 

3   Dynamic Inversion 

Dynamic inversion is an approach where feedback linearization is applied to the 

outputs of interests. It addresses the problem of controller design by transforming 

a nonlinear system to a linear one by feedback. The transformed plant, as an 

equivalent linear system, may be analyzed by all means of linear system and con-

trol theory. [5] [6] 

3.1   Inner Loop – Rotational Dynamics 

The inner loop commands angular rates and generates moment commands ( )
B

G

desM
j

 

for the control allocation. The rotational dynamics are well known. By neglecting 

the aerodynamic moment in the moment dynamics, the desired moment command 

is directly obtained by, 

( ) ( ) ( ) ( )
B

OBG

BBB

OB

B

OBG

BBB

G

des IIM ωωω
jj$jj

⋅×+⋅=
                           

(1) 

3.2   Outer Loop-Translation Dynamics 

The command to the outer loop is the desired position in the W-frame, from which 

it generates an angular rate command that is issued to the inner loop. Starting from 

Newton’s 2
nd

 law, we can derive the translational equation of motion by assuming 

that the W-frame can be used as inertial frame, 

( ) ( ) ( )
W

G

AeroW

G

GravW

GWW

W FFFam
jjjj

++=⋅ )(
                                  

(2) 

For a quadrocopter the aerodynamic lift and side force are negligible and the aero-

dynamic drag coefficient can be assumed to be constant for simplicity. With these 

assumptions, equation (2) can be rewritten as, 
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⋅= ρ . As the inner loop inputs have not appeared, 

Eqn. (3) is differentiated 
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Hence Eqn. (4) becomes 
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Now the angular rates explicitly appear in the equation. The first order time  

derivative of acceleration is the third order time derivative of the position. So the 

relative degree for position dynamics is three as expected. By the zeros in the first 

two rows of the specific force vector
Bf
j

, the yaw rate is algebraically cancelled out. 

The coupled dynamics can be inverted analytically using Eqn. (6). Here we can 

replace the 3
rd

 order time derivative of the position with the pseudo control 
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(7) 

A distinguished advantage here is that, the attitude of the quadrocopter (be it Euler 

angle or Quaternion) is not a controlled state. This leads to the dynamic inversion 

equation of such a simple form and does not result in singularities usually caused 

by the attitude. The only singularity in the above inversion is thrust = 0, which can 

be easily remedied in the implementation. Theoretically this control law is capable 

of flying loops, inverted fast descending, etc.  

The overview of the outer loop design is illustrated in Fig. 3, 
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Fig. 3 Overview of the position controller 

4   Implementation of the Two-Loop Design 

The controller was implemented on an ARM 7 processor, using the Simulink 

Quadrocopter Framework [7]. Critical parts of the control system like the inner 

loop, control allocation and data fusion are running with an update rate of 1 kHz 

[2]. With such a fast update rate, control deviation due to the dynamic inversion 

error can be quickly compensated. 

4.1   Quadrocopter Specifics 

The structure of the nonlinear dynamics of the quadrocopter is well known but 

some of the parameters have to be measured, which are listed in Table 1 below.  

‘ l ’ is the arm length between the motor and center of mass. nk and mk  are 

motor specific parameters and Mprop is the yaw moment generated by the propel-

lers , propmprop
2

nprop FkM,nkF ⋅=⋅=  [8]. 

Table 1 Quadrocopter Specific Parameters 

Mass (kg) 0.68 )I(I yyxx =  0.007 )N/rpm(10k 28
n

−  5.7 

(m)l  0.17 zzI  0.012 )m(km  0.016 

4.2   Actuator Saturations and Sensor Limitation 

The thrust per motor is in the range of 0.05 N to 3.5 N [8]. Thus the moment gen-

erated can be calculated easily. To control the moment while keeping the total 
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thrust unchanged, the thrust difference per motor have to be symmetric. Thus the 

control range of each motor around the hover point is about ±1.6N. The maximum 

moment and angular acceleration for each axis are calculated and listed in Table 2. 

Table 2 Actuator Saturations 

)(Nm)M(M yx =  0.544±  )Nm(Mz  0.102±  

))(rad/sq(p 2$$ =  77.7±  )(rad/sr 2$  8.5±  

For sensors, the Gyro is limited to a maximum value of 300°/s for the angular 

rates. The accelerometer measures accelerations with a full-scale range of ±1.5g, 

while the operation range is ±3g. The visual tracking system [2] is using a model 

based tracking algorithm with a stereo camera setup consisting of two standard 

webcams. The tracking system has an update rate of 25Hz and a speed limitation 

of about 1m /s due to motion blur in the images. The accuracy level varies with 

the lighting situation, the quadrocopter attitude and speed.  

4.3   Reference Model 

The reference model, or command filter is designed to generate smooth trajecto-

ries which is physically possible for the vehicle to fly. System relative degree,  

actuator dynamics, as well as actuator saturations and sensor limitations are taken 

into account. 

4.3.1   Inner Loop Reference Model 

The moment dynamics have angular rates as outputs and moments as inputs (see 

Eqn. 1). These dynamics have only relative degree one. However, in order to ex-

plicitly account for motor dynamics, a second order reference model is used in-

stead of a first order reference model. Hence the second order time derivative can 

be limited. The additional pole can be placed with a small time constant: 0.002s. 

In the experiments [8], the time constants of the propulsion dynamics are found 

to be 1/80s for increasing thrust and 1/40s for decreasing thrust. A simulation 

model has been constructed to assess and maximize the bandwidth of the inner 

loop, which determines the time constant of the slower pole. 

4.3.2   Outer Loop Reference Model 

For the outer loop, there are three integrations between the inputs (angular rates 

and the change of Thrust) and outputs (position in W frame). Hence a third order 

reference model is used. The time scale separation has to be considered in the  

outer loop. Compared with the attitude control inner loop shown in Fig. 1, the de-

signed rate control inner loop allows smaller time scale separation, i.e. higher 

bandwidth, for the position control outer loop. In flight test, the increase in the 

bandwidth is not so distinct, as the major limitation comes from the vision system 
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[2]. Nevertheless, the optimal Eigenvalues of the outer loop designed in [2], where 

attitude control was used as inner loop, were at ‘-4’,  while the optimal Eigenval-

ues of the outer loop are now assigned at ‘-5’. The differential equation of the 3
rd

 

order reference model is shown below, with ω0=5. 

cRRRR yyyyy ⋅=⋅+++ 3

0

3

0

2

00 33 ωωωω $$$$$$
                            

(8) 

4.4   Error Controller 

With exact dynamic inversion the outputs would exactly follow the reference tra-

jectories. Due to the model uncertainties such as parameter error and sensor error, 

the 3
rd

 order time derivatives of the vehicle position differ from the dedicated 

pseudo control. The effect is propagated through the integration and leads to a dif-

ference between plant outputs and reference signals. The error controller uses 

feedback of the state errors, augmented by an integral error control to achieve 

steady state accuracy. [9]. 

For the outer loop, the error dynamics is expressed by Eqn. (9), where 

yye ref −=  

∫ ⋅⋅+⋅⋅⋅+⋅⋅+⋅+= dteKeKKKeKKeKyv ipdddddref 222
$$$$$$

      
(9) 

The error dynamics can be adjusted by the coefficients K, to follow the reference 

dynamics. The integral gain can be determined by pole placement and a  

small value is chosen to ensure steady state accuracy while not affecting the  

performance. 

3
,,3 0

002

ω
ωω === pdd KKK

                                    

(10) 

4.5   Control Allocation 

For the quadrocopter, the relationship between the forces & moments and the pro-

pulsion controls are invertible. The desired force and moment commands are de-

noted with the subscript ‘des’. 
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4.6   Pseudo Control Hedging 

Pseudo Control Hedging (PCH) is implemented to ‘hide’ the actuator dynamics 

from the error dynamics [10]. The expected reaction of the plant v̂  is calculated 
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using Eqn. (6), in which the angular rates are taken from the Gyro measurements, 

the thrust and change of thrust are estimated by means of the modeled actuator 

dynamics ( )TTGA ,ˆ $ , as they are not measureable. 

( )( )TTGqpFv A ,ˆ,,ˆˆ $=
                                                  

(12) 

Then the hedging signal or the expected reaction deficit can be calculated 

by vvvh
ˆ−= . 

The dynamics of the reference model is decelerated by the expected reaction 

deficit. Another function of PCH is to prevent the integrator to wind up in the  

error dynamics [10]. This can be demonstrated in experiment (Fig. 4(e)) by intro-

ducing an external displacement disturbance to the hovering quadrocopter. 

4.7   Sensor Data Fusion 

To achieve high bandwidth control, fast data fusion is important. There is not 

enough computation power on the ARM 7 processor for a standard full state Kal-

man Filter with fast update rate. Instead, a model based Kalman state estimator is 

implemented to fuse the sensor data. The dynamic nature and system orders are 

taken into account in the filter, i.e. third order dynamics in x- and y-axes and  

second order dynamic in z- axis. Hence the inputs are time derivatives of the  

accelerations for x- and y- axes calculated using Eqn. (6) and acceleration in z axis 

obtained from the accelerometer. In total there are 9 states: 3 axes position, 3 axes 

velocities, and accelerations in x- and y- axes and acceleration bias in z axis. Ac-

celeration bias in x- and y- axes is unobservable as an AHRS (Attitude Heading 

Reference System) filter is used to estimate the quaternions. There are five meas-

urements, three positions obtained from the visual tracking system and two accel-

erations in x-y axes from the accelerometer. The constant Kalman gain matrix 

(9×5) is calculated as the optimal Kalman gain for the system offline, given the 

process noise and measurement covariance [11]. 

The vision system uses two standard web cameras to track the quadrocopter, 

based on edge matching algorithms [2]. The measured output is the position vector 

in the World frame at approximately 25Hz with variable accuracy (2cm -10cm). 

The latency of the vision system is about 100ms and it is taken into account by ad-

justing the position measurement with velocity compensation. 

The most important advantage of the state estimator is that it is running on-

board with an update rate of 1 kHz. Therefore, disturbances detected by the IMU 

can be compensated within milliseconds. The filter also significantly reduces the 

noise originated from the thermal accelerometer measurements [13]. Overall, the 

filter shows very fast reaction and little noise. 

5   Experimental Results 

In order to show the performance of the new controller, different trajectories like 

circle, infinity sign, and step commands have been tested with data recorded  
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 (a) Position Tracking in x axis 
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(b) Position Tracking in y axis 
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(c) Position Tracking in z axis 
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(d) Detailed Plot of (c) 
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(e) Reaction to External Disturbance without PCH and with PCH 

105 106 107 108 109 110 111 112
-0.2

-0.1

0

0.1

0.2

0.3

0.4

t(s)

y
(m

)

Without PCH

 

 

REF

MEAS

Distrubance

421 422 423 424 425 426 427

-0.2

-0.1

0

0.1

0.2

0.3

t(s)

y
(m

)

With PCH

 

 

REF

MEAS

Distrubance

 

Fig. 4 Experimental Results of Trajectory Flights 
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online. To show the accuracy of the system, the reference commands and the vi-

sion sensor measurement are plotted. It can be seen in Fig. 4 (a-d) that the position 

tracking is nearly perfect: the control errors are relatively small (within 5cm) esp. 

in the z axis. The inter-axis coupling is negligible. The robustness and perform-

ance of the system has been demonstrated in two international trade fairs, ‘Em-

bedded World 2010’ and ‘ELECTRONICA 2010’ held in Germany, where it was 

flying approximately 8 hours every day during the fairs. 

The effect of PCH can be seen in (e) and (f) of Fig. 4. Big overshot caused by 

the integrator wind-up can be compensated by the hedging signals that change the 

reference signals in case of actuator saturations. 

6   Conclusion 

With the current position controller and the vision sensor, the quadrocopter is able 

to fly with good accuracy and a comparatively higher bandwidth. Based on the 

available structure, new control theory and application, like adaptive control and 

advanced data fusion are of interest to the author and to be developed. 
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Parallel Implementation of Constrained 
Nonlinear Model Predictive Controller for an 
FPGA-Based Onboard Flight Computer 

Alexander Joos and Walter Fichter
*
 

Abstract. Model Predictive Control (MPC) is an established control method in 

various application areas. Its ability of taking constraints into account makes it in-

teresting also for automatic flight control. However, the computational complexity 

of MPC schemes usually limits its application. This paper describes a simple for-

mulation of a constrained nonlinear MPC (NMPC) approach that can be realized 

on small onboard computers based on Field Programmable Gate Arrays (FPGAs). 

In contrary to classical implementations of MPCs a computationally expensive op-

timization problem can be avoided while even nonlinear prediction models and 

constraints can be considered. This is accomplished through parallel time-domain 

simulations. To this end, the parallel implementation properties of FPGAs are ex-

ploited. The 3d-kinematics is proposed as prediction model for the NMPC to plan 

the aircraft state trajectory (position and attitude) taking constraints and obstacles 

into account. Simulation results with a nonlinear 6 degree of freedom simulation 

model verify the functionality. Feasibility of hardware synthesis of parallel pre-

dicted models for the NMPC approach on an FPGA is shown by analysis. 

1   Introduction 

Flight safety is an important topic for manned aircraft as well as for unmanned  

aerial vehicles (UAVs). Thus there is a need for automatic aircraft control  

algorithms that are able to cope with constraints in the aircraft states, inputs and 

with obstacles incorporating nonlinear dynamics of an aircraft. One possible ap-

proach to solve such problems is Nonlinear Model Predictive Control (NMPC) 
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with constraints. NMPCs have the ability to generate optimal inputs for nonlinear 

plants that can not sufficiently be controlled by MPCs with linear prediction mod-

els under the consideration of constraints.  

The basic idea behind NMPC is to solve repeatedly an optimal control problem 

with finite horizon. This means that an optimal control input is to be found that re-

duces a cost function in which deviations from a commanded state are weighted 

while considering constraints of the inputs and of the plant. This powerful control 

algorithm is therefore a good candidate to control unmanned aerial vehicles 

(UAVs) while considering nonlinear aspects of the plant and constraints on inputs 

and the states. On the other hand NMPC requires strong computing power to solve 

nonlinear constrained optimization problems in real-time, which makes this ap-

proach hard to implement on small computers as they are usually used as onboard 

flight control computers for small UAVs.  

In literature, some references can be found that cope with the implementation 

of MPCs on small computers with moderate computing power. Reference [1] 

demonstrates the implementation of a constrained MPC on an FPGA that uses a 

linear prediction model. For optimization the interior point method with dense ma-

trix formulation is used to solve the quadratic programming problem. A linear air-

craft model with 4 states and 1 input is used to demonstrate the control of the alti-

tude by the use of the elevator. The ability of the FPGA to compute code in 

parallel is not used. Parallel implementation on an FPGA is used in Ref. [2], but it 

is restricted to linear systems with constraints. In Ref. [3] an implementation of an 

explicit MPC is described in which the optimization problem is precomputed and 

the real-time control problem is simply reduced to the evaluation of a piecewise 

linear function. The limitation of this approach is that the memory requirements 

increase rapidly with an increase of the problems dimensions. An algorithm spe-

cific processor for embedded unconstrained MPC is proposed in Ref. [4]. The pre-

diction model in the demonstrated application is a linear state space model. For 

solving the optimization problem Newton’s Method is used. Matrix operations are 

computed in an auxiliary unit that acts as a matrix coprocessor. Results are pre-

sented from controlling the linear model of a rotating antenna with 2 states and 1 

input, constraints are not considered. In Ref. [5] the application to a nonlinear glu-

cose regulation control problem with constraints on the input is demonstrated by 

HIL simulations. The nonlinear model is linearized for several intervals to gener-

ate multiple linear state space matrices for use in the MPC algorithm and discre-

tized with a sample rate of 5 min, which is far too large for flight applications. The 

application of a nonlinear MPC for high level control for a fixed wing UAV is de-

scribed in Ref. [6]. The control problem uses an error dynamics model with 2 

states and 1 input that bases on the 2d-kinematics in horizontal plane. The input is 

constrained. The high level control is implemented in a PC104 onboard flight 

computer and tested in HIL simulations as well as with MATLAB simulations. 

Although the PC104 is a relatively powerful onboard computer (comparable to a 

desktop PC) and the prediction model is of small dimension, 4 Hz update rate is 

the limit that is reported in this reference. 
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In summary, online computed MPCs on small computers are restricted to  

low-dimensional problems with linear prediction models. Then, the optimization 

problem for linear MPC is the solution of a quadratic program that can be solved 

efficiently even online [7, 8]. In case of NMPC applications [6] powerful and rela-

tively large and heavy computers are used together with models of low complexity 

(2d-kinematics). Thus, it is not applicable for small fixed wing aircraft. 

Reference [9] describes an optimization method based on brute force method 

for NMPC that does not suffer from complex optimization. In general this optimi-

zation method is also computationally very expensive since numerous prediction 

models representing the plant have to be propagated with numerous input candi-

dates in each control step. No implementations on small flight control computers 

for UAV application are reported in literature. 

In this paper, the design of a constrained NMPC based on optimization with 

time-domain simulations is presented. It is shown that a UAV state trajectory con-

trol problem can be solved even with a low number of models that have to be pre-

dicted. Furthermore a partially parallel implementation of the prediction models is 

proposed to achieve feasibility. 

The paper is structured as follows. After a review of classical MPC formula-

tions in chapter 2, a parallel implementable approach is introduced. As prediction 

model for high level state trajectory planning for the aircraft the 3d-kinematics 

model is proposed. A method to refine the commands of the NMPC without addi-

tional computational effort follows. Simulation results of a nonlinear 6 degrees of 

freedom (6-DoF) simulation model controlled by a constrained NMPC with the 

nonlinear 3d-kinematics prediction model are demonstrated in applications with 

collision avoidance and a kind of unconventional landing scenario. Both scenarios 

require a state trajectory planning by the NMPC. The last chapter presents results 

from hardware synthesis of parallel prediction models for an FPGA. 

The first contribution of this paper is a feasibility proof of a NMPC based on 

time-domain simulation optimization, applied to a UAV state trajectory planning 

problem even with a low number of prediction models. The computationally most 

expensive part of this kind of constrained NMPC formulation is the real-time 

model prediction. Therefore, a second contribution is a parallel implementation 

scheme of model prediction for a constrained NMPC on a FPGA-based onboard 

flight control computer as it is presented e.g. in Ref. [10]. This enables the appli-

cation of constrained NMPC to small flight vehicles. 

2   Classic Nonlinear Model Predictive Control Formulation 

The optimization problem for a NMPC can be described by 

∫+=

pTt

t

dFJ

0

0

))(),((min)(min τττ uxu
uu

                                      

(1) 
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subject to 

)()),(),(( 00 txxuxfx == ττ$
                                        

(2) 

and with equality and inequality constraints g1 and g2: 

],[0))(),((,0))(),(( 0021 pTtt +∈∀≥= τττττ uxguxg  (3) 

x  and u  are predicted states and inputs respectively, )(uJ  is the cost function 

that shall be minimized with respect to u , and pT  is the prediction horizon. 

NMPC requires a computationally expensive online solution for a nonlinear op-

timization problem [7]. Reference [7] names three approaches from which only di-

rect solutions using a finite parameterization of the controls and/or constraints are 

normally applicable for on-line application. A direct solution for this problem can 

be achieved by parameterization of the controls at every predicted sampling inter-

val and holding them constant for that interval [7]. To calculate the cost function 

the systems dynamics described by equation 2 are solved by numerical integration. 

Equality and inequality constraints are evaluated with the predicted inputs and 

states as well. The resulting optimization problem can then be solved with sequen-

tial quadratic programming [11]. The matrices for this approach are often dense, 

which makes the solution with this approach computationally expensive. The “si-

multaneous approach” in Ref. [7] can fail when the optimization cannot be com-

pleted in time. In this case, feasibility is not guaranteed with this approach.  

All of the above methods have the disadvantages of being computationally  

extensive or even unsolvable on computers with low computational power. There-

fore in the following section, a simpler approach to the solution and on-line  

implementation of NMPC problems is presented. 

3   NMPC Approach with Parallel Implementation 

3.1   General Description of the Proposed NMPC Approach 

The idea is to propagate a nonlinear simulation model with a certain set of combi-

nations of control input candidates [9] that are quantized in amplitude and discre-

tized in time and to evaluate the resulting state vectors and inputs in a cost function. 

In this paper, to save computational cost, the prediction of the models is proposed 

to be done partially in parallel on an FPGA which is especially suited for this task. 

The optimization problem is therefore reduced to finding the cost function with the 

smallest value and taking the corresponding input of the first propagation step as 

the optimal control input.  

The parameters of two NMPC setups demonstrated in this paper are listed in 

Table 1. To introduce the idea, NMPC 1 will be considered in the following. Later 

in this document results will be shown also with NMPC 2. 
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Table 1 Parameters of the proposed NMPC used for simulation. 

Parameters of the proposed approach NMPC 1 NMPC 2 

Prediction Horizon T
p
 = 7s T

p
 = 7s 

Number of variable control inputs n = 2 (p
c
, q

c
)  n = 2 (p

c
, q

c
)  

Time intervals with constant control input m = 2 (3s, 4s) m = 2 (3s, 4s) 

Number of discrete candidates per control input d = 3 d = 9 

Discrete candidates for each control input  

in the first time interval with constant control  

input (discrete candidates in the second time  

interval are chosen ≈ 15% smaller) 

p
c
 = (j

p
-1)·0.1 rad/s; 

j
p
 = 0, 1, 2  

q
c
 = (j

q
-0.8)·0.07 

rad/s; j
q
 = 0, 1, 2 

p
c = (j

p
-4)·0.03 rad/s; 

j
p
 = 0,…,8 

q
c
 = (j

q
-3.9)·0.02 rad/s; 

j
q
 = 0,…,8 

Prediction steps in each of the m time intervals h
1 
= 3, h

2 
= 4 h

1 
= 3, h

2 
= 4 

Number of predicted models d^n^1+d^n^m = 90 d^n^1+d^n^m = 6642 

Number of resulting predicted state vectors d^n^m = 81 d^n^m = 6561 

Number of cost functions to evaluate d^n^m = 81 d^n^m = 6561 

Number of model prediction steps in total h
1 
· d^n^1+ h

2 
· d^n^m 

= 351 

h
1 
·d^n^1+ h

2 
d^n^m  

= 26487 

Constraints in attitude |φ | < 30°, |θ | < 15° |φ | < 30°, |θ | < 15° 

Sample rate of the NMPC controller 10 Hz 10 Hz 

The prediction model of the NMPC is the nonlinear 3 dimensional kinematics 

model with prediction starting condition )( 00 txx =  where )( 0tx  is the actual 

state (position and attitude) of the aircraft (s = sin, c = cos): 
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 (4) 

Inputs to the prediction model u  are bodyfixed velocities (u,v,w)
T
 and turn rates 

(p,q,r)
T
, the predicted states x  are euler angles (φ,θ,ψ)

T
 to describe the attitude of 

the aircraft, and earthfixed “north-east-down” position (x,y,z)
T
. Inputs u, v, w, r are 

chosen as constants in the demonstrated results in this paper. Each of the n = 2 

variable inputs (roll and pitch rate) can take d = 3 discrete candidate values  

(pc, qc)
T
 per time interval with constant discrete value (NMPC 1). 

The number of predicted models over a first time interval is d 
n
 = 9, each with 

one of nine constant combinations of input values pc and qc. The resulting nine 

state vectors of these nine predicted models for the first time interval are used  

as start conditions for another time period in which again the input values can take 

d
 n

 = 9 combinations of discrete values. In the second time period all nine combi-

nations of input values are used with all nine resulting predicted state vectors of 
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the first time period. This leads to d
 n·m

 = 81 predicted state vectors after the sec-

ond time interval. Figure 1a) shows the predicted positions of the 81 predicted 

state vectors as they are calculated in one single NMPC update. Figure 1b) shows 

the NMPC update with 1 Hz NMPC update rate. In the simulation results in this 

paper the NMPC update rate is 10 Hz, so in the results shown later in this paper 

there are 10 times more predicted state vectors than displayed in Fig. 1b).  
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Fig. 1 a) Predicted positions in an example with 81 predicted state vectors (position and at-
titude) according to Table 1, NMPC 1. b) Prediction trees calculated with an NMPC update 
rate of 1 Hz. 

A cost function J  is evaluated with all d
 n·m

 resulting state vectors and corre-

sponding inputs: 
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where i = t0, t0+δt,…, t0+Tp and Tp is the prediction horizon, δt is the length of a 

time interval with constant value of control input in the numerical integration of 

the dynamic prediction model. xref is a commanded final state for the aircraft  

(position and attitude). To reach a commanded point with a commanded attitude, 

deviations of the predicted state (position and attitude) from xref and predicted in-

puts are weighted in F. Approaching the reference point from a certain direction is 

fulfilled by appropriate weights for x- and y- direction and a weight for a deviation 

between the actual heading of the aircraft and the direction to the commanded fi-

nal position. Constraints cφ, cθ, cP for roll angle, pitch angle and position are con-

sidered as barrier functions: 

{ }Pj
k

c
j

j ,,
                 else0

violatedconstraintif0
θφ∈⎩⎨

⎧ >
=

                   

(6) 

Constraint cP is used e.g. for obstacle avoidance and positions below ground level. 

Avoiding the obstacle is supported by a cost that increases when the distance dist 
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between predicted position and the obstacle decreases. The optimization problem 

in this case is reduced to finding the one cost function Jmin with the lowest value 

out of the 81 resulting cost functions (Eq. 7). The optimal input is the predicted 

control input of the first time interval that belongs to cost function Jmin. 

{ } min1/min JdbbJ mn
b =≤≤∧Ν∈ ⋅

                                  
(7) 

This input is applied to the plant for one control cycle and the procedure is re-

peated in every control cycle as it is usually done in MPC approaches (Fig. 1b). 

3.2   Refinement of NMPC Commands 

In this chapter an idea is presented how to generate finer and therefore more pre-

cise NMPC commands without increase of computational effort. One possibility is 

to use more and finer discretized candidates as in NMPC 2 (Table 1) what leads to 

an increase in computational cost. Another idea is to use the same number of can-

didates, but finer candidates for p and q in the first of the m time intervals in the 

NMPC and add these to the actual roll rate p(t0) and pitch rate q(t0) of the plant. 

The model prediction tree (Fig. 1) is therefore being computed starting from the 

actual position, attitude, roll and pitch rate of the aircraft. 
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The presented approach introduced in Chapter 3 reduces the computational effort 

significantly by parallel implementation of prediction models (this can be done in 

parallel in each of the m time intervals) and if a low number of discrete input can-

didates are used. Of course, the choice of number of discrete values each control 

input can take is a trade-off between computational effort and optimality of the so-

lution. Simulation results will show that even low numbers of input candidates can 

be used due to the repeated computation of optimal controls within the NMPC 

scheme with high update rate. 

4   Simulations Results for UAV State Trajectory Planning 

4.1   Scenarios and Control Structure 

At first a scenario is presented in which the aircraft starts from an arbitrary posi-

tion and attitude and shall reach a given setpoint of position and attitude while 

avoiding an obstacle without violating constraints. This requires some kind of 

state trajectory planning which is solved in this paper by NMPC. For this scenario, 

results with high and low numbers of discrete input candidates in the prediction 

model are demonstrated. In a second scenario a kind of unconventional landing is 

demonstrated that also requires state trajectory planning due to the initial starting  
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state relative to the commanded final state. In both scenarios no steady state condi-

tions have to be fulfilled and no planned state trajectory is required a priori. The 

NMPC controlled aircraft has to find a feasible state trajectory to a commanded 

final state (position and attitude) without violating constraints and in scenario 1 

while avoiding an obstacle automatically. 

The control structure consists of two loops. An inner Linear Quadratic Regula-

tor (LQR) control loop (low level controller) commands aileron, elevator, rudder 

and thrust. It is designed as a proportional/integral LQR controller. Since the air-

craft has only 4 control inputs, only the 4 aircraft states: bodyfixed rates p, q and 

the bodyfixed velocities u and v can be controlled exactly by the low level control-

ler. Bodyfixed down-velocity w follows from the pitch stability of the aircraft and 

varies only slightly around a constant value. Yaw rate r follows from the dynamics 

and the kinematics of the aircraft, e.g. r = g/V sin(φ) in case of a steady state coor-

dinated turn, with g = gravitational acceleration and V = speed of the aircraft [12]. 
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Fig. 2 Control structure of the demonstrated example. 

The outer loop (high level controller) is a NMPC controller that generates com-

mands for pitch and roll rate (pcom, qcom)
T
 according to the methodology introduced 

in the previous chapter.  

Simulations in which the 3d-kinematics in the NMPC was predicted with r = 0 

rad/s and with r = g/V sin(φ) have shown both comparable control results. In the 

following, results will be shown with prediction input r = 0 rad/s. Although the 

prediction error is higher than with r = g/V sin(φ), the control problem can be 

solved due to the high update rate (10 Hz) of the high level NMPC controller that 

generates changing commands (pcom, qcom)
T
 every 0.1s.  

With this control structure the 3d-kinematics model can be used as adequate 

prediction model for the nonlinear MPC as will be demonstrated in the following. 

4.2   Simulation Results 

In this chapter simulation results are demonstrated with the NMPC approach  

as proposed in chapter 3.1. For simulation purposes a nonlinear 6-DoF aircraft 

simulation model is used. The states of the 6-DoF simulation model are bodyfixed 

velocities (u,v,w)
T
 and turn rates (p,q,r)

T
, Euler angles (φ,θ,ψ)

T
 to describe the atti-

tude of the aircraft, and earthfixed “north-east-down” position (x,y,z)
T
. The aircraft 

dynamics in the simulation are modeled with aerodynamic force and moment co-

efficients gathered from USAF Digital DATCOM, gravity forces, control forces 
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due to control surface deflection that are also generated with DATCOM, and pro-

peller forces. 

Table 1 lists the parameters of two NMPCs used for the following simulation 

results. In the first scenario (Fig. 3) the aircraft starts from an initial position  

(x = 0m, y = 0m, z = -100m)
T
 in earthfixed “north-east-down” coordinates with 

φ = ψ = 0°, θ = 3°. The commanded final state is xref = (x = -1000m, y = -1000m, z 

= 0m, φ = 0°, θ = 3°, ψ = ± 90°)
T
 where ψ = ± 90° is e.g. the heading of a runway. 

Figure 3 shows 3d-plots of NMPC 1 and NMPC 2 (Table 1) applied to a collision 

avoidance problem. 

 

Fig. 3 Scenario 1: 3d-plots of NMPC 1 (81 predicted state vectors/controller update) and 
NMPC 2 (6561 predicted state vectors/controller update) both with and without collision 
avoidance. 

Throughout the flight, constraints in roll and pitch angle shall not be violated 

which is fulfilled as can be seen in Fig. 4 for NMPC 1. During the first turn the 

NMPC controlled aircraft uses the maximal allowed angles in order to change the 

direction as fast as possible. The obstacle has been placed right in the obstacle-free 

path (curves that go through the cylinder in Fig. 3). With Fig. 3 it can be stated, 

that the results of NMPC 1 and NMPC 2 are comparable. The planning and obsta-

cle avoidance problem is solved in either case.  

Both controllers prevent a violation of the constraints (results for NMPC 1 in 

Fig. 4) and both manage to avoid the obstacle (Fig. 3). Remember that NMPC 2 

uses a higher number of discrete values for each control input (factor 3, Table 1) 

and a far higher number of predicted models per controller update than NMPC 1 

(factor ≈ 74, Table 1).  
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Fig. 4 States of the aircraft during flight according to Fig. 3 with NMPC 1 applied. Con-

straints are plotted as dashed lines. 

The trade-off between optimality and computational expense is won by NMPC 

1. This has been observed in numerous simulations in which NMPC 1 has shown 

that it can solve control problems even with this low number of discrete candi-

dates for each control inputs. The reason for this is the repeated optimization 

scheme of the NMPC at an update rate of 10 Hz. The prediction tree with the 81 

predicted state vectors is calculated every 0.1s and the commands for the turn rates 

are updated with the same rate. The control commands of the NMPC are displayed 

in Fig. 5. It can be seen that the commands for roll and pitch rate are well con-

trolled by the low level controller even if the commanded rate by the NMPC 

changes quickly (e.g. q at about 2.6 s). Due to this fast update in commands from 

the NMPC it is possible to command even little changes in the attitude. 
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Fig. 5 Roll rate and pitch rate commanded by NMPC 1 and controlled by the LQR low 
level controller according to the scenario 1 in Fig. 3. 

In a second scenario the aircraft starts from an initial position (x = 0m, y = 0m, 

z = -150m)
T
 with φ = ψ = 0°, θ = 3°. The task is to reach a final state xref = (x = 

10m, y = 30m, z = 0m, φ = 0°, θ = 3°, ψ = 0/180°)
T
 which lies below the initial  

position, while taking constraints |φ | < 30°, |θ | < 20° into account. With these 

constraints there is no straight path the aircraft could fly to reach the commanded 

final state. The NMPC finds a feasible state trajectory to accomplish the reference 

state xref. Of course, since this is an optimization problem with numerous reference 

states (final position, final attitude) and constraints, not all states can always be 

controlled exactly in this kind of landing scenarios. 
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Fig. 6 Scenario 2 with final position right below the initial position. 

4.3   Results for Refined NMPC Commands 

Figure 7 shows the commands of the same scenario as in Fig. 3 but with far 

smoother commands for p and q than in Fig. 5 (method as described in chapter 

3.2, Eq. 8). As in Fig. 1 (NMPC 1, Table 1), 81 resulting state vectors are pre-

dicted and evaluated in cost functions every 0.1s. Simulation results are compara-

ble to the results shown in Fig. 3 with less gain in altitude during the first turn and 

smoother behavior in pitch θ. 
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Fig. 7 Refined roll rate and pitch rate commanded by the NMPC and controlled by the LQR 
low level controller according to a scenario as in Fig. 3. 

5   Hardware Synthesis of Parallel Model Prediction for an 

FPGA 

Model prediction is the computationally most expensive part of the presented con-

strained NMPC approach. To this end, in this section feasibility of parallel model 

prediction on an FPGA for the constrained NMPC problem is demonstrated with 

the nonlinear 3d-kinematics prediction model as it is used in the previous chapter. 

Trigonometric functions are calculated through interpolation of look-up-tables for 

cosine and its inverse to enable parallelization. 

In the following, required resources of an FPGA are reported for several con-

figurations of parallel computed nonlinear 3d-kinematics models (Table 2). The 
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code has been implemented in the DK Design Suite of Mentor Graphics that al-

lows the programming of an FPGA in a C-like language called Handel-C. The 

presented computational effort results are generated in the DK Design Suite. The 

FPGA for which the code is built is a Xilinx Spartan 3A DSP. 

FPGAs contain configurable logic blocks (CLBs) to synthesize the program 

code in hardware. Each CLB contains slices and each slice is a group of logic 

blocks such as look-up-tables (LUTs) and flip-flops (FFs) [13]. To save logic 

blocks, Arithmetic Logical Units (ALUs) can be used by the compiler e.g. for 

multiplication. In the following the number of occupied slices will be regarded as 

indicator for hardware effort of the program code. 

It can be stated, that with an increasing number of parallel implemented predic-

tion models, the number of occupied slices on the FPGA increases approximately 

linearly (compare cases 1, 5, 7 in Table 2). If more than one prediction step per 

parallel implemented prediction model is calculated (this is done in series on the 

FPGA) more slices are required (compare case 2 against case 1) and the total 

computing time increases due to serial computations. 

Table 2 Comparison of required resources of the FPGA with different implementations of 

model prediction. 

Case LUTs FFs ALUs Occupied 

Slices 

Time de-

lay of 

longest 

path 

Serial model 

prediction 

steps of each 

parallel pre-

diction 

model 

Parallel im-

plemented 

prediction 

models 

Time in-

tervals 

with con-

stant con-

trol input 

Start val-

ues for all 

predicted 

models 

1 6% 

(2890) 

2% 

(1381) 

7% 

(9) 

7% 

(1878) 

23.01 ns 1 9 1 Identical 

2 9% 5% 7% 14% 23.01 ns 5 9 1 Identical 

3 13% 13% 7% 30% 23.01 ns 2 9 2 Identical 

4 28% 21% 7% 52% 23.01 ns 10 9 2 Identical 

5 29% 12% 39% 39% 23.01 ns 1 49 1 Identical 

6 36% 16% 39% 51% 23.01 ns 1 49 1 Different 

7 52% 21% 64% 70% 25.44 ns 1 81 1 Identical 

For a simple estimation of maximal number of model prediction steps that can 

be computed on the FPGA in one second it is assumed that no other code is run-

ning on the FPGA, so case 7 can be considered in which 70% of the FPGA-slices 

are used. Further assumptions are, that each parallel prediction model consists of 

approximately 100 lines of code and that 81 model prediction steps can be calcu-

lated in parallel (case 7 in Table 2). The clock-rate of the FPGA for this estimation 

is calculated as 1/(time delay of the longest path).  

Thus the number of model prediction steps that can be calculated in one second 

on the FPGA is: 
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Computation time T for 81 parallel model prediction steps with each 100 lines of 

code is: T = 100·25.44·10
-9

s/81 = 3.1·10
-8

s. Since communication aspects between 

the FPGA and a serial computing unit on the onboard computer and the calcula-

tion and evaluation of a cost function are not regarded in this simple estimation the 

calculated number of maximal model prediction steps/s is just an upper bound that 

cannot be reached in a full NMPC implementation. It is expected that the maximal 

number of computable model prediction steps will be reduced by a factor of  

0.1-0.01 in relation to the value in equation 9. This is still significantly more than 

the number of model prediction steps used in the simulations above that verified 

feasibility of the proposed approach (Table 1, Fig. 3-9). 

6   Conclusion 

This paper demonstrates the feasibility of a proposed parallel implementable con-

strained NMPC approach to a UAV state trajectory planning problem with and 

without collision avoidance. The presented approach is based on time-domain  

optimization which requires the prediction of time-domain models. A method to 

refine the NMPC commands without additional computational effort has been in-

troduced. The functional feasibility of the constrained NMPC with 3d-kinematics 

as prediction model even with a low number of control candidates has been 

shown in simulations. To save computational cost, parallel implementation of 

prediction models on an FPGA has been proposed and implementation feasibility 

has been shown through hardware synthesis of different configurations of parallel 

prediction models for an FPGA.  

The presented constrained NMPC approach enables the use of constrained 

NMPC with dimensions that were hardly implementable on small UAVs before. 
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Robust Linear-Parameter Varying Autopilot 
Design for a Tail/Thrust Vector Controlled 
Missile 

Berno J.E. Misgeld, Marco Darcis, and Thomas Kuhn* 

Abstract. A robust autopilot design methodology using linear parameter varying 
transformations is presented and applied to a high-agile surface launched air de-
fence missile, which is currently developed by Diehl-BGT-Defence. The lateral 
dynamics of the tail/thrust vector controlled missile are modelled as a second-
order quasi-linear parameter varying (LPV) system. The incidence angle is used as 
exogenous variable, which is assumed to be estimated during missile flight. De-
coupled lateral dynamics are assumed because of the application of a bank-to-turn 
manoeuvre plane angle control approach. Lateral single channel flight controllers 
are designed via H∞-optimal control and µ-synthesis with the LPV lateral dynam-
ics, which are extended by uncertain models of control actuating system, time-
delay and body bending model. The flight controllers for lateral dynamics are  
designed at a number of operating points described by the LPV model over the 
MACH flight envelope. The controllers are implemented using a gain scheduling 
approach, where an altitude dependent gain loss in the control loop is compen-
sated with the inverse normalised air density. The flight controllers were imple-
mented in the nonlinear simulation environment and tested in extreme flight  
manoeuvres. All flight controllers showed good damping and acceleration tracking 
performance and were stable during nonlinear simulations. 

1   Introduction 

Flight control systems for modern missiles have to face greater challenges in terms 
of control system design. The missile autopilot has to be designed for a large flight 
envelope of the missile. For high-agile missiles, this means high incidence ma-
noeuvres, mainly at the beginning and during the endgame of flight. In addition to 
demanded large lateral acceleration capacity, the flight control system has to be 
designed to engage manoeuvring targets over an extended velocity and altitude 
range. The resulting multivariable system to be controlled is highly nonlinear and 
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time-varying. The autopilot has to guarantee feedback control properties like fast 
and accurate acceleration reference tracking, good rate damping and robust stability 
and performance.  

Traditionally, missile autopilot design is done using gain scheduling control 
[1], [2]. The nonlinear, time-varying system is linearised using a first-order Taylor 
approximation at a so called trim condition, which is a quasi-equilibrium, obtained 
at a certain time of flight. Classical linear controller design techniques can then be 
used for the resulting linear time-invariant system. This procedure is usually re-
peated for a family of operating points, for example Mach number, dynamic pres-
sure, incidence angle, motor burn time and manoeuvre plane angle. The resulting 
controller parameters are interpolated depending on the current operating condi-
tions during missile flight. This approach worked well in most applications, but 
problems with a rapidly changing incidence angle, which leads to a fast parameter 
scheduling variable in the frequency range of the incidence angle mode, may oc-
cur [3]. A further disadvantage of this approach is the rising number of controller 
design points resulting from the extended flight envelope of modern missiles. This 
leads to a higher development cost, or demands the introduction of automated tun-
ing methods [4]. 

With the introduction of robust linear control design techniques, new possibili-
ties for missile autopilot design were given. The definition of certain require-
ments, as well as uncertainties to the design process is possible with methods like 
H∞-optimal control and µ-synthesis. As a result of the optimisation process, a con-
troller is given, which guarantees robustness and performance properties. The ap-
plication of robust control techniques to missile autopilot design showed promis-
ing results [5]-[9], although more than one robust controller is needed to cover the 
flight envelope of the missile. This problem can be overcome with schedul-
ing/blending techniques [10] and was successfully demonstrated for the industrial 
missile autopilot example in [9]. The autopilot of a high-agile tail/thrust vector 
control air-to-air missile of this industrial application was designed for thrust/ 
burnout phase, varying altitude and incidence angles at a given dynamic pressure 
operating point. In addition to the successfully demonstrated controller blending, 
flight controller anti-windup was proven to work reliably during real world flight 
tests [11]. The approach of [9] was further developed in a missile control approach 
for a high-agile tail/thrust vector control ground-to-air missile, with industrial ap-
plication [12]. In this approach, the robust controllers are designed at certain Mach 
operating points and gain scheduled over altitude. Uncertainties included in the 
approach are parametric airframe uncertainties resulting from linearisation over 
the incidence angle range and at different motor burn times. This approach worked 
well for control performance tests using a flight test validated nonlinear six-
degrees of freedom model. Since the nonlinear lateral dynamics, depending on the 
incidence angle are modelled as uncertainties, the control design approach is con-
sidered suboptimal in performance terms. 

To include the nonlinear incidence angle dependent lateral dynamics to a linear 
time-invariant controller design, linear parameter varying (LPV) control methods 
can be used [3]. LPV-based methods consist of reformulating the nonlinear plant 
to a linear time-varying model for which then a linear controller design technique 
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can be applied [3], [13]. In the approach presented in [3], the nonlinear lateral dy-
namics are brought to a quasi-LPV form by a state transformation. The approach 
of [3] is adopted in this paper and revised. The nonlinear lateral dynamics are re-
formulated for quasi-LPV transformation and augmented by uncertainties in Sec-
tion 2. In Section 3 the controller design is presented via µ-synthesis. Different to 
[3], the controller is designed as a (1, 2) controller for acceleration tracking and 
yaw/pitch rate damping. Implementation aspects are presented in Section 4. The 
controller is tested in simulations with the nonlinear lateral missile model and  
finally in a nonlinear validated 6DOF model in Section 5. In addition to the two 
lateral LPV channel controllers a roll controller is used to damp the roll rate and to 
control the manoeuvre plane. Finally, this paper ends with results and a discussion 
in Section 6. 

2   System Model 

2.1   Lateral Dynamics 

The lateral yaw dynamics at a certain operating point can be described by the sec-
ond order nonlinear state-space model of the form 
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where β  is the sideslip-angle, r is the yaw rate, m is the missile mass, Iyy is the 

missile inertia, ζ  the rudder position given by the control actuating system (CAS) 

and 0V  is the absolute velocity. Note that the output equation for ay,cg is nonline-

arly dependent on β . This term is linearised and regarded as uncertainty in the 

control design approach. The force and moment terms ny bb ,  in the control input 

matrix are linearised at low sideslip-angles  
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and contain aerodynamic and thrust-vector control (TVC) derivative values, with 

q , the dynamic pressure, refref DS , , the aerodynamic reference area and diame-

ter, respectively. Similar to ny bb , , the term Nr is the aerodynamic yaw moment 

derivative with respect to the yaw rate 
r

c

V

D

I

DS
qN nref

yy

refref

r
∂

∂
=

0

. Note that ny bb ,  

are nonlinear with respect to the sideslip-angle and time varying with respect to 
TVC. This effect is neglected in the quasi-LPV transformation but specified as pa-
rametric uncertainty in the controller design. The nonlinear aerodynamic force and 
moment entries in (1) are generated from aerodynamic data at each Mach design 
point as table interpolation data 
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The model of the lateral dynamics (1) is given at each Mach number of the flight 
envelope of the missile for the controller design grid. All model data is generated 
at sea level altitude and stored for controller design. The equation of (1) is ex-
tended by a linear CAS model, described by a second order differential equation 
with uncertain damping CASD  and Eigenfrequency CASω  
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For controller design and test, the model of (1) is extended by a model of the 
structural vibrations (body bending). Only the first bending mode is modelled us-
ing a low damped oscillator state space model of second order 
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in which bbω  and bbζ  are the body bending frequency and the damping. The in-

put ζ  is the rudder command, calculated from fin deflections and the outputs are 

the delta rates and accelerations, applied by addition to equation (1). bbak ,  and 

bbqk ,  are the rate and acceleration gains, calculated from constants, derived by a 

mechanical finite element model and validated by body bending tests [9]. Finally, 
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the time-delay of the flight computer was modelled as two sample time instances, 
with a continuous first order Padé approximation to 
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where sT  is the system sampling time, dn =2 is the assumed time delay. Equation (5) 

is applied to the outputs of (1). The flight controller model, consisting of equations 
(1) to (5) is given in Fig. 1. 

2.2   LPV System 

The nonlinear system of lateral dynamics that is considered here shall be trans-
formed to a linear system, whose parameter matrices A, B and C depend on an 
exogenous time-varying variable θ  
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with input vector u, state vector x and output vector y. Note that the exogenous 
time-varying parameter of the quasi-LPV system form (6) is actually not exoge-
nous, but the internal angle-of-attack state and is assumed to be estimated in the 
flight control system. The nonlinear system considered here is an output-nonlinear 
square system with state dependent nonlinear matrix f(z), linear matrix A(z), B(z) 
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which is to be transformed to the quasi-LPV system 
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Fig. 1 Model of the lateral dynamics, including control actuating system (CAS), structural 
dynamics (body bending) and time-delay of the flight computer 
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with the transformed input vector u* and state vector w*. The requirement for the 
transformation from (7) to (8) is 00f =)(  and that there exist nonlinear continu-

ous, differentiable functions )(),( zuzw eqeq  for which holds 
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Using (9) and the introduction of a new state )(*
zeqwww −=  and an input trans-

formation )(*
zuuu eq−= , equation (7) can be transformed to the quasi-LPV  

system. For the transformation the matrices )(),( zBzA  are rewritten to 
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After some algebraic reformulation, the quasi-LPV system is obtained as 
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Finally, for the nonlinear yaw dynamics of (1) the quasi-LPV model is given by 
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with the partial derivative function 
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and the state equilibrium equations 
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3   Controller Design 

To conduct a controller design the quasi-LPV model (12) has to be modelled as a 
linear time-invariant (LTI) system. Therefore, the sideslip-angle β  is assumed to 

be constant. The linear model is obtained at a certain sideslip-angle and can be 
used for controller design. To include the uncertainties of the varying sideslip-
angle into the controller design, the parameters for varying incidence angle are de-
termined over the incidence angle range and modelled as parametric uncertainty. 
As a nominal value the zero sideslip-angle parameters are used. In addition to  
the uncertainty, modelled to sideslip-angle dependent parameters, parametric un-
certainty was assumed to the control input matrix parameters by, bn. As mentioned 
before, this is done to include incidence angle dependent variation in the control 
efficiency. Note that this effect is reduced with an active TVC, but has to be taken 
into account. The plant of lateral dynamics is augmented with equations (2)-(5).  

 

 

Fig. 2 Plant interconnection structure with linear time-invariant lateral missile dynamics for 
controller synthesis 
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No body bending model was included in the controller design. The augmented 
model with weighting function for controller synthesis is shown in Fig. 2. From 
Fig. 2 it can be seen that the controller design is conducted as a (1, 2) controller, 
consisting of a rate feedback and an acceleration tracking loop. 

The controller output u (input to the actuator) is fitted with a complex weight-
ing to limit the actuation bandwidth 
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where ku is the static gain, zu is zero and pu is the pole of the transfer function. Pa-
rameters for (15) are determined for each Mach controller design point from 
crossover frequency and gain at high/low frequency. Wacom is a constant weight 
which specifies a ratio of acceleration tracking to rate damping loop in the µ-
synthesis. Sensitivity weightings for yaw rate and acceleration loop are used to 
specify the desired damping and acceleration tracking properties of the loop. The 
weight Wr for the damping loop is modelled as constant (gain) and the weight 
Wacc(s) is a transfer function 
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with parameters kacc, zacc and pacc are again derived from gain at low frequencies 
(steady state error for the acceleration loop), crossover frequency and high fre-
quency gain. The weighting for the acceleration loop Wacc(s) does not have inte-
gral action, since the linearised dynamics of the quasi-LPV system have integral 
action in the acceleration loop. Finally, constant weightings Wna and Wnr are in-
troduced which cover the effects of measurement noise that corrupt the feedback 
channels. The actuator and the lateral dynamics are extended by parametric uncer-
tainties, which are represented by the structured (real) block uncertainty 
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where 
yy bb δδ , ,…

CASDδ  are real scalar perturbations 11 ≤≤− iδ  and correspond 

to the uncertainties in the model equations. The plant is brought to the general 
control configuration [14], [16] and the µ-synthesis is conducted with DK-
iteration algorithm using the Robust Control Toolbox [15]. After controller design 
and test of robust stability, step response tests were conducted with the linear de-
sign model, containing model uncertainty. A test result for a higher super sonic 
Mach number is given in Fig. 3 as an example for the results achieved in linear 
simulations, where the upper part of the figure shows the damping loop and the 
lower part of the figure shows the acceleration tracking loop. 
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Fig. 3 Step response tests with the design model including uncertainty at a higher  
super-sonic Mach number with damping (upper) and acceleration tracking (lower) part of 
the figure. 

4   Flight Controller Implementation 

Similar to the previous implementation of the robust controller [12] five lateral 
flight controllers were designed for the complete Mach envelope. Before imple-
mentation, the controllers were reduced to 7th-order with additional check of ro-
bust stability. In addition to the implementation of the robust controllers, tuned 
with the equilibrium linearised quasi-LPV system at a certain sideslip-angle, each 
controller consists of a state transformation for the specific Mach number, see  
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Fig. 4. Note that the centre-of-gravity acceleration can be used in the nonlinear 
model of yaw motion as a feedback value (Fig.4). Sign changes have to be re-
garded when implementing the LPV transformations for the pitch channel. The 
controllers were gain scheduled depending on the normalised air density as a func-
tion of altitude 
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ρ h
klat = .                                                     (18) 

with )(hρ , the air density corresponding to the current altitude and 0ρ , the sea 

level air density. Acceleration error and rate input to the controller were divided 
by the factor latk . Note that the dynamic pressure for the state transformations has 

also to be adopted since the transformation is dependent on angle-of-attack or 
sideslip angle. The variation of thrust vector effects over altitude were not consid-
ered in the scheduling approach and are assumed to be covered by the control ef-
fectiveness uncertainties used in the controller design. During simulations over 
varying altitude a slight degradation of control performance towards slower re-
sponse times could be observed, which is addressed to the TVC altitude dependent 
effects. 

Finally, signal filtering and processing were applied to the acceleration input of 
the controller. The filters were implemented in the nonlinear 6-degrees of freedom 
model only and are needed for two reasons. Firstly, the body bending effects that 
were not included in the controller design can reduce control performance in the 
acceleration path due to the high gain of the body bending Eigenfrequency peak. 
Therefore, a notch filter was implemented to filter the inertial measurement unit 
(IMU) measured acceleration. The notch filter frequency was scheduled depend-
ing on motor burn phase. Secondly, the robust flight controller was designed with 
centre-of-gravity (COG) acceleration. To avoid lever arm effects in the accelera-
tion signal due to IMU displacement from COG a lever arm correction filter was 
implemented as a second order filter with time variable lever arm al  to 
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which is used to filter mainly low frequency effects of the lever arm rate bias on 
acceleration. Another reason for the band limitation is the body bending effects on 
the rate signal which should not be amplified. Input to (19) is the notch filtered 
yaw rate. The output of (19) is subtracted from the notch filtered measured accel-
eration signal. 

5   Nonlinear Simulation 

Nonlinear simulations were conducted with two models. In a first step, a controller 
designed for a certain Mach number is implemented and tested in the nonlinear 
model of lateral yaw motion (1), which is extended by the CAS model. The con-
troller response to acceleration reference steps is tested over the whole manoeuvre 
range at that Mach condition. In a second step, the controller is implemented in the 
nonlinear 6-degrees-of-freedom simulation as a three axis (roll, pitch and yaw) 
autopilot. The roll controller already in use for the ground-to-air missile was used 
to complete the three axis autopilot. The 6DOF model contains full nonlinear wind 
tunnel measured aerodynamics, a detailed model of the control actuation system, 
the body bending model, a motor model and a model of the thrust vector control 
system. Fig. 5 shows an acceleration reference step response series with the 
nonlinear model of yaw motion at a medium super-sonic Mach number. The ac-
celeration is scaled on the maximum allowable acceleration over all flight condi-
tions, which is determined by the structural limit. A slight tendency to overshoots 
can be seen towards higher acceleration reference values. This effect is due to the 
controller design at lower incidence angles with the fixed quasi-LPV model. How-
ever, since the overshoot is less than 10%, a gain scheduling as a function of inci-
dence angle is not required. Although additional performance may be gained with 
the introduction of a gain scheduling of inner- and outer-control loop. Note that 
there is no steady-state error in Fig. 5. This is because of the integral action of the 
quasi-LPV dynamics. Integral action and the resulting zero steady-state error are 
the result of an accurate equilibrium transformation. Steady-state errors can be ob-
served if uncertainties are introduced to the model, for example to )(βY  or 

)(βN . The lower part of Fig. 5 shows the resulting rudder position and the side-

slip-angle, which are scaled on the maximum allowable rudder position and the 
global maximum sideslip-angle, respectively. 

An example of a simulation with the nonlinear 6DOF model is given in Fig. 6. 
The multivariable loop response is given for an acceleration step on the yaw chan-
nel of 50% maximum possible acceleration value. Note that the missile motor is in 
burnout condition leading to a drop in missile velocity below Mach 1.0 and a re-
sulting increase in the incidence angle towards the absolute incidence angle limit 
for the missile. After a relatively fast initial response to the step command, a small  
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Fig. 5 Response to acceleration steps with nonlinear yaw model at medium super-sonic Mach. 

steady-state error can be seen, which is suggested to derive from the drop of  
missile velocity. The multivariable loop coupling is small compared to the step in 
acceleration (see z-axis acceleration). This is also true for the nick/yaw rate and 
the roll rate, which is not shown in the Fig. 6. Similar results to Fig. 6 were  
obtained during step response tests with the nonlinear 6DOF model. A slight  
tendency to overshoots could be observed with reference steps leading to high  
incidence angles. Small steady-state errors were observed for rapidly changing  
velocity, that is on large manoeuvres without burning motor, or small manoeuvres 
with burning motor. 
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Fig. 6 Nonlinear 6DOF model response to an acceleration step command in the yaw chan-
nel around Mach 1 during motor burnout. 

6   Results and Discussion 

A robust autopilot design using a transformation of the nonlinear yaw dynamics to 
a quasi-linear parameter varying system was presented. The robust autopilot was 
tuned with the quasi-LPV model at a low sideslip-angle for the yaw dynamics of a 
high-agile ground-to-air missile. The resulting autopilot was first tested in a 
nonlinear model of yaw motion and in a second phase tested in a detailed and vali-
dated nonlinear 6-degrees-of-freedom model. The controller was designed for dif-
ferent Mach numbers, used as operating conditions and scheduled over the air 
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density. Uncertainties of the quasi-LPV system dependent variable and control 
surface effectiveness were included to the design. Good results were achieved in 
simulations with a tendency to small overshoots (below 10%) and small steady-
state error when leaving the operating conditions of a single controller. As a result, 
five controllers were designed to cover the full flight envelope of the missile. 
However, the controllers have to be combined using a blending methodology to 
obtain a reasonable flight controller, which will be the subject of future work. Fur-
thermore, the quasi-LPV transformation functions contained parameters which 
were time dependent, like mass and inertia but were defined as constant parame-
ters in the approach. It is suggested that the introduction of a time-dependency as a 
function of burn-time will lead to further performance gains of this approach. It 
should be noted, that the control system reaction to rudder/elevator saturation was 
not investigated in this study as there were no means of anti-windup measures  
included to this approach. In addition to that, the angle-of-attack and the sideslip-
angle were assumed to be known, instead of using estimators for both values. The 
investigation of these effects will be subject to future work. 
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A Single Frequency Strapdown Algorithm for 
Integrating IMUs in ECEF-Frame 

Johann Dambeck and Benjamin Braun
*
  

Abstract. This contribution will introduce a strapdown navigation algorithm for 

integrating inertial measurement units (IMU), which – due to its inherent ability to 

propagate navigation states at the same frequency as the integrating IMU is pro-

viding measurements – is called single frequency strapdown algorithm. The algo-

rithm will be derived w.r.t. Earth-centred Earth-fixed reference frame. Numerical 

results for a simulated kinematic trajectory are presented. 

1   Introduction 

The integration of measurements of an inertial measurement unit (IMU) for 

propagation of (kinematic) navigation states like position, velocity and orientation 

is an integral part in many air, land and sea navigation applications. The derivation 

from Newtonian physics results in a system of first order ordinary differential 

equations for the navigation states given measurements of the specific force in the 

body-fixed frame (shorthand b-frame) centred at and along/about the orthogonal 

(calibrated) IMU sensing axes w.r.t. inertial space. These inertial measurements 

are provided by so-called non-integrating IMUs. Since most precise IMUs are 

time-integrating, i.e. provide short equidistant time-integrals of specific force and 

angular rate, the commonly derived inertial navigation differential equations can-

not be directly used. Common engineering practice is to calculate the required 

non-integrating IMU measurements by dividing the integrating IMU measure-

ments by the integration time interval, but this corresponds to first order error 

terms and thus is only useful for low grade IMUs or applications with a high vi-

bration level which would counteract the benefit of higher order terms in strap-

down navigation algorithms. In contrast to this simple averaging approach, inertial 
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navigation experts have derived so-called dual frequency strapdown algorithms  

[9, 6, 8, 4, 11] based on Laning-Bortz orientation parameterization [7, 1] i.e. a rota-

tion matrix is parameterized by the exponential of a skew matrix containing the 

three Laning-Bortz orientation parameters. These algorithms are “dual frequency” 

because integrating IMU measurements at a higher frequency are used to propagate 

navigation states at a lower frequency (relations of 3:1 and 4:1 have been pub-

lished). This contribution will introduce a strapdown navigation algorithm for inte-

grating IMUs, which – due to its inherent ability to propagate navigation states at 

the same frequency as the integrating IMU is providing measurements – is called 

single frequency strapdown algorithm. The algorithm will be derived w.r.t. Earth-

centred Earth-fixed reference frame (shorthand e-frame). The paper is organized as 

follows: First, the navigation algorithm for non-integrating IMUs in e-frame is  

introduced in section 2. Then, the orientation solution using integrating gyroscope 

measurements is derived in section 3. In section 4 the transport rate is calculated  

as intermediate result for the position and velocity solution of section 5 using  

integrating accelerometer measurements. The resulting single frequency strapdown 

algorithm is presented as a template in section 6. Finally, numerical results for a 

simulated kinematic trajectory are shown in section 7. 

2   Navigation Algorithm for Non-integrating IMUs in e-Frame 

Before addressing the single frequency strapdown algorithm for integrating IMUs 

the commonly known strapdown navigation differential equations expecting non-

integrating IMU inputs are briefly revisited. These will serve as basis for the new 

algorithm in the sequel. Independent of the chosen navigation state parameteriza-

tion the system of ordinary differential equations for propagating the navigation 

states using non-integrating IMU measurements is of the form 

( ) ( ) ( )( ), ,t t t=z f z s$
                                                   

(1) 

where z(t) is the navigation state vector (containing position, velocity and orienta-

tion) and s(t) is the sensor measurement vector (containing IMU measured specific 

linear force and angular rate). In the most general case the navigation state vector 

z(t) consists of the Cartesian position vector xe(t), the Cartesian velocity vector 

ve(t) and the rotation matrix Reb(t) where e represents the Earth-centred Earth-

fixed reference frame and b the body-fixed frame. The sensor measurement vector 

s(t) is constituted of the vector of specific force in b-frame fb(t) measured by the 

accelerometer triad and the vector of angular rate in b-frame w.r.t. inertial (i-) 

frame ωib(t) measured by the gyro triad: 

( )
( )
( )
( )

( ) ( )
( )

: and : .

⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦
e

b
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t
t

t t t
t

t

x
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z v s ω
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Fig. 1 Input / Output ratio of single and dual frequency strapdown algorithms 

With this choice of navigation state parameters the nonlinear 1
st
 order ordinary 

navigation differential equations becomes [2]: 

    ( ) ( )=$
e e

t tx v   (2) 

 ( )( ) ( ) ( ) ( ), 2 ( )= ⋅ + − ×$
e eb b e e ie e

t t t t t tv R f γ x ω v  (3)

   ( ) ( ) ( ) ( )
eb eb ib ie eb

t t t t= −R R Ω Ω R$  (4) 

where 

xe(t) (Cartesian) position in e-frame 

ve(t) (Cartesian) velocity in e-frame 

Reb(t) Rotation from b- into e-frame, Reb(t)Reb
T
(t) = I  ∧ det(Reb(t)) = +1 

fb(t) Specific force in b-frame 

ωib(t) Angular rate of b-frame w.r.t. i-frame, Ωib(t) := [ωib(t) ×] 

ωie Angular rate of e-frame w.r.t. i-frame, Ωie := [ωie ×] 

γe(xe(t), t) Gravity vector incl. tidal acceleration in e-frame 

t Time 

 

This system of navigation differential equations in e-frame for a non-integrating 

IMU is nonlinear only due to the gravity field of the Earth (and tidal accelerations) 

and has time varying coefficients, i.e. the linear acceleration fb(t) and angular rate 

ωib(t) measured by a non-integrating IMU. So far, a numerical integration routine 

of sufficient order like Runge-Kutta [5] could be used to numerically solve this 

system of first order differential equations since no closed-form solution is known. 

Integrating IMUs however measure time integrals of linear accelerations fb(t) and 

angular rates ωib(t), i.e. velocity increments Δvb(t) and angle increments Δθib(t)  

defined by 

( ) ( ) ( ) ( ), : d , , : d .τ τ τ τ
−Δ −Δ

Δ − Δ = Δ − Δ =∫ ∫t t

b b ib ib

t t t t

t t t t t tv f θ ω  

It will be shown how to solve the system of navigation differential equations in e-

frame (2), (3) and (4) for an integrating IMU with sufficiently high error order by 

keeping the integrating IMU input rate as navigation state output rate. Figure 1 il-

lustrates the input/output ratios of the single and dual frequency algorithms. 
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3   Solution of the Rotational Initial Value Problem 

The orientation differential equation in e-frame (4) describes the propagation of 

the orientation of b-frame w.r.t. e-frame knowing the IMU measured rates Ωib(t) 

and the Earth’s rate of rotation Ωie. Since the Earth’s rate of rotation is very accu-

rately known [10] it is independent of position and velocity and has no explicit 

time dependency. In this section the corresponding orientation difference equation 

incorporating integrating gyro measurements is derived. 

3.1   Decomposition and Discretization of the Rotational Initial 

Value Problem 

For simplicity the initial value problem (4) can be decomposed into two initial 

value problems 

( ) ( ) ( )
00,= =$

ie ie ie ie iet t tR R Ω R R  and                         (5) 

( ) ( ) ( ) ( )
00, .= =$

ib ib ib ib ibt t t tR R Ω R R                              (6) 

The desired solution Reb(t) is obtained by multiplying the solutions of both initial 

value problems, i.e. 

( ) ( ) ( )T .= ⋅
eb ie ib

t t tR R R  

The corresponding orientation difference equations can be written as 

 ( ) ( ) ( ) ( )
00, ,ie ie e ie iet t t t t t t+ Δ = ⋅ + Δ =R R T R R   and (7) 

 ( ) ( ) ( ) ( )
00, ,ib ib b ib ibt t t t t t t+ Δ = ⋅ + Δ =R R T R R  (8) 

where Te(t, t + Δt) and Tb(t, t + Δt) are yet unknown “transition” matrices. If these 

recursive equations would be known the solution of our initial value problem (4) 

would be 

( ) ( ) ( ) ( ) ( ) ( )

( )

( )T T T, ,+ Δ = + Δ ⋅ + Δ = + Δ ⋅ ⋅ ⋅ + Δ

=
'**(**)eb ie ib e ie ib b

eb

t t t t t t t t t t t t t t

t

R R R T R R T

R

 

( ) ( ) ( ) ( )T , , .eb e eb bt t t t t t t t t⇔ + Δ = + Δ ⋅ ⋅ + ΔR T R T
                    

(9) 

3.2   Determination of the Transition Matrix of the e-Frame 

The solution of the initial value problem (5) with constant coefficients due to a 

constant Earth’s rate of rotation is  

( ) ( )0

0
e .ie t t

ie ie
t

⋅ −
= ⋅

Ω
R R
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By definition Rie(t) changes by a simple rotation about the Earth’s axis of rotation, 

i.e. z-axis of e-frame, according to the Earth’s rate of rotation (ωie := (0,0,ωie)
T
) 

                
( ) ( ) ( ) ( )3

e ie t

ie ie ie ie
t t t t tω⋅Δ+ Δ = ⋅ = ⋅ ΔΩ

R R R R  

( ) ( )
( ) ( )
( ) ( )3

cos sin 0

, e sin cos 0 .

0 0 1

ie

ie ie

t

e ie ie ie

t t

t t t t t t

ω ω

ω ω ω⋅Δ

Δ − Δ⎡ ⎤⎢ ⎥⇒ + Δ = = Δ = Δ Δ⎢ ⎥⎢ ⎥⎣ ⎦
Ω

T R  (10) 

3.3   Determination of the Transition Matrix of the b-Frame 

Between two arbitrary coordinate frames ( ) ( ) ( )t t t= ⋅R R Ω$  and R(t, t + Δt) = 

R(t)T(t, t + Δt). The general transition matrix T(t, t + Δt) is derived by expanding 

the general rotation matrix R(t, t + Δt) in a Taylor series 

( ) ( ) ( ) ( ) ( ) ( )
2 3

4

2! 3!

t t
t t t t t t t t

Δ Δ
+ Δ = + ⋅ Δ + ⋅ + ⋅ + ΔR R R R R$ $$ $$$ U  (11) 

and subsequently expressing the time derivatives of the rotation matrix ( )tR  by 

the orientation differential equation ( ) ( ) ( )t t t= ⋅R R Ω$  and the corresponding time 

derivatives 

2

2 3

,

,

2 .

= ⋅

⎡ ⎤= ⋅ + ⋅ = ⋅ +⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ + + ⋅ + + = ⋅ + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$

$ $$$ $

$ $ $ $$ $ $ $$$$$ $

R R Ω

R R Ω R Ω R Ω Ω

R R Ω Ω R ΩΩ ΩΩ Ω R Ω ΩΩ ΩΩ Ω

 

Substitution of these time derivatives of R into (11) gives 

( ) ( ) ( ) ( ) ( )
2 3

2 3 4

3
2 .

2! 3!

⎡ ⎤Δ Δ
+Δ = + Δ + + + + + + + Δ⎢ ⎥⎣ ⎦

$ $ $ $$t t
t t t t tR R I Ω Ω Ω Ω ΩΩ ΩΩ Ω U  

t t t+ Δt t− Δ

+Δ ibΘ
−Δ ibΘ

 

Fig. 2 Subsequent integrating IMU measurements. 
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One can easily identify the term in square brackets as transition matrix T(t, t + Δt). 

It just depends on the skew rate matrix Ω and its time derivatives 

( ) ( ) ( ) ( )
2 3

2 3 4

3, 2 .
2! 3!

Δ Δ
+ Δ = + ⋅Δ + + ⋅ + + + + ⋅ + Δ$ $ $ $$t t

t t t t tT I Ω Ω Ω Ω ΩΩ ΩΩ Ω U
 

 (12) 

For the particular recursive form (8) of the initial value problem (6) the skew rate 

matrix Ωib and its time derivatives are required to calculate the transition matrix 

Tb(t, t + Δt) which have to be extracted from integrating IMU measurements. For 

this purpose, two subsequent integrating gyro triad measurements ΔΘib
+
 and ΔΘib

−
 

(cf. figure 2) are expanded in Taylor series 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 3
4

2 3
4

: d ,
2! 3!

: d .
2! 3!

τ τ

τ τ

+Δ
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−

−Δ

Δ Δ
Δ = = ⋅ Δ + ⋅ + ⋅ + Δ

Δ Δ
Δ = = ⋅ Δ − ⋅ + ⋅ + Δ

∫
∫

$ $$

$ $$

t t

ib ib ib ib ib

t
t

ib ib ib ib ib

t t

t t
t t t t t

t t
t t t t t

Θ Ω Ω Ω Ω

Θ Ω Ω Ω Ω

U

U
   

(13) 

These expansions represent relations between subsequent integrating gyro meas-

urements ΔΘib and the non-integrating gyro measurement Ωib(t) and its time de-

rivatives at time t. Inverting these Taylor series expansions and substituting the re-

sult into the expression for the transition matrix Tb(t, t + Δt) would give the 

desired result. Alternatively, we can express the transition matrix Tb(t, t + Δt) by 

products of two subsequent integrating gyro measurements and identify the coeffi-

cients by direct comparison 

( ) 2

3 1 2 3 4 5

2 3

6 7

,

. . .

b ib ib ib ib ib ib ib

ib ib

t t t a a a a a

a a h o t

+ − + + − − +

− +

+ Δ = + Δ + Δ + Δ + Δ Δ + Δ Δ

+ Δ + Δ +

T I Θ Θ Θ Θ Θ Θ Θ

Θ Θ
    

(14) 

With the angular increments (13) the required double products in (14) are as in 

(13) up to 3
rd

 order terms in the time increment Δt 

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( )

3

3

3

3

2 2 4

2

2 2 4

2

2 2 4

2

2 2

2

t
ib ib ib ib ib ib ib

t
ib ib ib ib ib ib ib

t
ib ib ib ib ib ib ib

t
ib ib ib ib ib ib ib

t t t t t t t

t t t t t t t

t t t t t t t

t t t t t t

+ + Δ

+ − Δ

− + Δ

− − Δ

Δ ⋅ Δ = ⋅Δ + + ⋅ + Δ

Δ ⋅ Δ = ⋅Δ − − ⋅ + Δ

Δ ⋅ Δ = ⋅Δ + − ⋅ + Δ

Δ ⋅ Δ = ⋅Δ − + ⋅ +

Θ Θ Ω Ω Ω Ω Ω
Θ Θ Ω Ω Ω Ω Ω
Θ Θ Ω Ω Ω Ω Ω
Θ Θ Ω Ω Ω Ω Ω

$ $
$ $
$ $
$ $

U
U
U

( )4tΔU
    

(15) 

and the triple product of the most actual integrating gyro measurement is corre-

spondingly 

( ) ( )3 3 4
.

+ + +Δ ⋅ Δ ⋅ Δ = ⋅ Δ + Δib ib ib ib t t tΘ Θ Θ Ω U
                             

(16) 

(13), (15) and (16) are substituted into (14) and the resulting equation is termwise 

compared with (12) to determine the coefficients of (14). 
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Comparison of coefficients linear in Ωib(t) and its time derivatives gives  

three linear equations (of which two are linearly dependent) for two unknown co-

efficients 

( )
( )
( )

1 2

2 1 1 1
1 22 2 2

3 1 1 1
1 26 6 6

: 1

:

:

ib

ib

ib

t t a a

t t a a

t t a a

⋅Δ + =

⋅Δ − =

⋅Δ + =

Ω
Ω
Ω

$
$$

 

which are solved for a1 and a2 

1

2

1 1 1 11
.

1 1 1 02

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

a

a
 

Comparison of coefficients bilinear/quadratic in Ωib(t) and its time derivatives 

gives three linear equations for four unknown coefficients (underdetermined, thus 

we use the degree of freedom to preserve symmetry and preferably eliminate 

terms using oldest measurements by setting a6 := 0) 

( )
( ) ( )
( ) ( )

2 2 1
3 4 5 6 2

3 1 1 1 1 1
3 4 5 62 2 2 2 3

3 1 1 1 1 1
3 4 5 62 2 2 2 6

:

:

:

ib

ib ib

ib ib

t t a a a a

t t t a a a a

t t t a a a a

⋅ Δ + + + =

⋅ Δ − + − =

⋅ Δ + − − =

Ω
Ω Ω
Ω Ω

$
$

 

which are solved for a3, a4 and a5 

1 1 1
3 2 2

2 1
4 3 12

1 1
5 3 12

1 1 1

1 1 1 .

1 1 1

− ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

a

a

a

 

Comparison of coefficients cubic in Ωib(t) simply gives ( )3 3 1
7 6

: .⋅Δ =
ib

t t aΩ  

Substituting the derived coefficients a1 ... a7 in formula (14) for the transition 

matrix Tb(t, t + Δt) results in 

( ) ( ) ( )2 3 41 1 1
3 2 12 6

,b ib ib ib ib ib ib ibt t t t
+ + + − − + ++ Δ = + Δ + Δ − Δ Δ − Δ Δ + Δ + ΔT I Θ Θ Θ Θ Θ Θ Θ U

 
(17) 

With the determined transition matrices (10) and (17) the recursive propagation 

equation for the rotation matrix describing the orientation of the b-frame relative 

to the e-frame in 4
th

 error order is completely determined. Herein, beside constant 

coefficients, just two successive integrating gyro measurements are required. Us-

ing a longer history of integrating gyro measurements would mathematically give 

a more accurate result, but due to sensor noise and platform vibrations one can in 

general not expect higher orientation accuracy when incorporating higher order 

terms. To conclude, it is recommended to orthonormalize Reb(t + Δt) from time to 

time in order to reduce numerical inaccuracies [3]: 
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( ) ( ) ( ) ( )
1/ 2

T .
eb eb eb eb

t t t t
−⎡ ⎤= ⎣ ⎦R R R R

                               
(18) 

4   Angular Rate between e- and b-Frame from Integrating 

Gyro Measurements 

The rate matrix Ωeb(t) will be required for the solution of the translational initial 

value problem. Hence a formula for the computation from integrating gyro meas-

urements will be derived in this section. For the calculation of Ωeb(t) from Ωib(t) 

the Earth’s rate of rotation has to be transformed into b-frame and then compen-

sated, i.e. 

( ) ( ) ( ) ( )T .= −
eb ib eb ie eb

t t t tΩ Ω R Ω R  

Ωib(t) is calculated from gyro measurements by again making use of the Taylor 

expansions (13). The most trivial inversion of the Taylor series gives the central 

difference quotient 

( ) ( ) ( )21

2ib ib ibt
t t

+ −

Δ
= Δ + Δ + ΔΩ Θ Θ U  

and therefore the rate matrix Ωeb(t) finally gets 

( ) ( ) ( ) ( ) ( )T 21

2
.eb ib ib eb ie ebt

t t t t
+ −

Δ
= Δ + Δ − + ΔΩ Θ Θ R Ω R U

               
(19) 

Later, when collecting all partial results in the single frequency strapdown algo-

rithm template in section 6, it will become clear that the 2
nd

 error order of the cen-

tral difference quotient is sufficient to use. 

5   Solution of the Translational Initial Value Problem 

The translational differential equations in e-frame (2) and (3) describe the propa-

gation of position and velocity w.r.t. e-frame given the IMU measured specific 

forces fb(t), the local gravity vector γe(xe(t)), the Earth’s rate of rotation ωie and the 

solution of the rotational initial value problem Reb(t). In this section difference 

equations for position and velocity incorporating integrating accelerometer meas-

urements are derived. 

5.1   Non-integrating from Integrating Accelerometer 

Measurements 

Just like the angular rate Ωib(t) in the orientation differential equation had to be re-

placed by integrating gyroscope triad increments ΔΘib(t), the specific force fb(t) in 

the velocity differential equation has to be expressed by integrating accelerometer 

triad increments Δvb(t). Thus, Δvb(t) is analogously to (13) expanded in a Taylor 

series 
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and due to the lower error order required again solved by trivial series inversion 
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5.2   Velocity from Integrating Accelerometer Measurements 

The velocity difference equation is derived by Taylor series expansion 
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e

tv$  is given by the velocity differential equation (3) 
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Thus, using (20) and ( ) ( ) ( )=$
eb eb eb

t t tR R Ω , the velocity time derivatives are 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
( )( )

( )

( ) ( )

2

2 T

2

2
2

2

2 .

b b

e eb e e ie e

e eb b b b

e eb eb e

e

ie e

t t t t t
t

t
t t t t

t t

t t

+ −

+ − + −

Δ + Δ
= + − × + Δ

Δ

∂⎡ ⎤Δ + Δ Δ − Δ
= + +⎢ ⎥

Δ Δ ∂⎣ ⎦
− × + Δ

v v
v R γ x ω v

γ xv v v v
v R Ω v

x

ω v

$

$$

$

U

U
        

(22) 

The Cartesian gravity vector γe(xe(t)) and the gravity vector gradient ∂γe(xe(t))/∂xe 

can be approximated by the gravity field of an equipotential ellipsoid of revolution 

[2]. For tactical grade IMUs this model is sufficient which furthermore can be 

truncated after the J2 parameter as defined in [10]. For navigation and strategic 

grade IMUs more accurate models are required. 
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5.3   Position from Integrating Accelerometer Measurements 

Analogously to (21), the position difference equation is obtained by expansion 
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The time derivatives of xe(t) can be substituted by the known velocity ve(t) and the 

velocity time derivatives (22). 

6   Single Frequency Strapdown Algorithm in e-Frame 

In this section, equations (9), (10), (17), (18), (19), (21), (22) and (23) required for 

propagation of position, velocity and orientation are combined in a template, con-

stituting the single frequency strapdown algorithm. 
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• State propagation 
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Output: 

• Current navigation states: ( ) ( ) ( ), ,+ Δ + Δ + Δ
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Gravity and gravity gradient in e-frame could be modelled by [2] 
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with GM and J2 specified in [10] and δij=1 for i=j and δij=0 for i≠j. 

7   Numerical Results 

The performance of the single frequency strapdown algorithm was analyzed by 

means of numerical simulation. Especially the accuracy and the robustness against 

noise were considered. For the sake of analytically knowing the derivatives differ-

ent sinusoidal functions in the components of the position vector were chosen as 

kinematic trajectory (cf. figure 3). 100 Hz error-free integrating IMU measure-

ments were easily derived from the analytical trajectory. By numerically integrat-

ing these generic measurements over two consecutive sample time intervals  

error-free velocity and angle increments Δvb and Δθib were generated. For the 

analysis of the accuracy, the error-free IMU measurements were processed. For 

the verification of the robustness against noise, white noise was added to the  

generated IMU data. The results are additionally compared to the often used  

averaging approach which converts the integrating IMU measurements to non-

integrating ones before integrating them with the conventional strapdown equa-

tions and Runge-Kutta integration scheme. The non-integrating measurements are 

obtained by dividing the velocity and angle increments by the sample time, b(t) = 

Δvb(t-∆t,t) / Δt and 

s

ȳib(t) s s y y

s

 = Δθib(t-∆t,t) / Δt, which correspond to a 1
st
 order Taylor 

series expansion of Δvb(t-∆t,t) = ∫ tt–Δt fb(τ) dτ  and Δθib(t-∆t,t) = ∫ tt–Δt ωib(τ) dτ . b(t) 

and 

s

ȳib(t) s s y y

s

 thus can be interpreted as mean specific forces and angular rates over 

the last time step Δt, which explains the naming averaging approach. Figure 4 

shows the position and orientation errors with error-free IMU measurements. The 

horizontal and vertical position errors remain below 1.5e-3m. The orientation error 

does not exceed 6e-11°. Figure 5 illustrates the performance of the single fre-

quency strapdown algorithm with measurement noise (σΔv = m/s, σΔθ = 2e-8 rad). 

The position error is lower than 3m. The orientation error remains below 2e-5° in 

roll, pitch and yaw axis. 
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Fig. 3 True trajectory 
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Fig. 4 True position, velocity and orientation along trajectory 
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Fig. 5 Position and orientation error with Single Frequency Strapdown Algorithm and er-

ror-free IMU measurements 
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Fig. 6 Position and orientation error with Averaging Approach and error-free IMU meas-

urements 
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Fig. 7 Comparison of position, velocity and orientation error with noisy IMU measure-

ments (σΔv
=1e-4m/s, σΔθ= 1e-6°) ▪▪▪▪ Averaging Approach, ▬▬ Single Frequency Strapdown 

Algorithm 

8   Conclusion 

The computational effort of the dual frequency algorithm is extremely low, but it 

has two drawbacks. First it is based on Laning-Bortz orientation parameters which 

lead to a quite nonlinear orientation differential equation in Laning-Bortz parame-

ters, which is commonly approximated before it is solved. Second dual frequency 

strapdown algorithms require a higher integrating IMU input rate to provide the 

lower navigation state output rate. 

The single frequency strapdown algorithm presented requires some more com-

putations, but gives a result with a very transparent error order and allows to output 

the propagated navigation states with the same rate an integrating IMU is providing 

its measurements. This approach can easily be adapted to other parameterizations 

of the navigation state vector and the usage of quaternions as orientation parame-

ters. The provided simulation results verify the accuracy of the single frequency 

strapdown algorithm and show its robustness for a suitable trajectory. 
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Broadband Wind Estimation Algorithm for
Gust Load Alleviation

Arndt Hoffmann, Kai Loftfield, and Robert Luckner

Abstract. Wind disturbances especially vertical gusts and turbulence can deterio-

rate the quality of measurements performed by the payload of utility aircraft. Gust

load alleviation systems can reduce this effect significantly if the atmospheric dis-

turbances are determined precisely and broadband up to the frequency range of the

short period mode. A novel approach to determine vertical gusts and turbulence that

can be used for future implementation in a gust load alleviation system based on

feed forward control is presented. This approach uses a linear aircraft model of the

longitudinal aircraft motion combined with the Dryden Turbulence Model within a

Kalman filter framework. For performance analysis it is compared to an algorithm

using simplified flight mechanical relations. For proof of the concept and its robust-

ness, different kinds of disturbances such as discrete gusts and a bias in the angle of

attack measurement are simulated and discussed.

1 Introduction

For a variety of missions, such as airborne gravity measurement, the flight of a util-

ity aircraft has to be smooth even in disturbed atmosphere. In such a mission the

aircraft is operated at low altitudes for optimal measurement quality. As a conse-

quence the aircraft is often affected by gusts and turbulence producing additional

aerodynamic forces and moments. The resulting aircraft accelerations disturb mea-

surement quality and therefore reduce mission effectiveness and affect the pilot’s
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and the mission-engineer’s workload. Gust load alleviation systems based on feed

forward control can alleviate accelerations significantly if the atmospheric distur-

bances are determined precisely and broadband up to the frequency range of the

short period mode. The predominating influences on the utility aircraft Stemme S15,

a powered glider with a high aspect ratio and a single propeller engine, are vertical

gusts and turbulence and therefore the wind-induced angle of attack (AOA). They

cause additional vertical accelerations. For a broadband computation of the not di-

rectly measurable, but observable, wind-induced AOA, flight mechanical variables

have to be measured accurate and broadband.

In Wise [1] an Extended Kalman filter (EKF) is used to determine the AOA and

the angle of side slip (AOSS) based on the nonlinear six degree-of-freedom equa-

tions of motion and a detailed aircraft aerodynamic model. The EKF framework

uses inertial measurements of Euler angles, body rates, body acceleration and mea-

surement of dynamic pressure. This approach was successfully flight tested in the

X-45 program. Heller [2] and Myschik [3] use a complementary filter approach

based on linear equations to determine AOA and AOSS to extend the bandwidth of

these signals. Braga [4] shows a low computational cost method dealing with time

varying noise statistical properties using a new approach for an adaptive EKF. The

method is validated in flight path reconstruction application, with simultaneous air

data calibration for AOA, AOSS and static pressure sensors. Combining a linear

model of the short period motion and the Dryden Turbulence Model, Hoffmann [5]

has shown a Kalman-Bucy filter approach for precise and broadband wind-induced

AOA determination in presence of atmospheric turbulence and observation noise.

Myschik [6] discussed an integrated wind estimation/navigation system for use on

general aviation aircraft. This integrated system enables on board determination of

the actual wind condition and aerodynamic flow angles using inertial navigation

data. A method for estimating wind fields for small and mini unmanned aerial ve-

hicles is described by Langelaan [7]. The approach utilizes sensors that are already

part of standard autopilot sensor suite. An approach how wind AOA can be com-

puted using relations of flight mechanic variables that can be measured in sufficient

quality is shown by Hahn [8].

In this paper a method using a linear aircraft model of the longitudinal aircraft

motion combined with the Dryden Turbulence Model within a discrete Kalman fil-

ter framework is described. For proof of the concept and its robustness, different

kinds of disturbances such as discrete gusts and a bias in the AOA measurement are

simulated and discussed. The results of this approach are compared with results of

the approach described in [8].

2 System Model

In this section the linear aircraft model and the Dryden Turbulence Model are de-

scribed and it is shown how they are combined, for analysis purpose and Kalman

filter design.
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2.1 Notation

In the aircraft longitudinal motion that is considered here the flight path velocity V K

and the airspeed V A are two dimensional vectors in the aircraft’s plane of symmetry.

The velocity components in x-direction are referred to with the letter u, the ones

in z-direction with the letter w. The second index defines the reference frame (g =

geodetic, b = body fixed). The velocity vectors are

V Ab =

[

uA

wA

]

b

=

[

cosα
sinα

]

VA, V Kg =

[

uK

wK

]

g

=

[

cosγ
−sinγ

]

VK

tanα =
wAb

uAb

, VA =
√

w2
Ab + u2

Ab, sinγ = −
wKg

VK

, VK =
√

w2
Kg + u2

Kg ,

where α is the angle of attack (AOA) and γ is the flight path angle.

2.2 Linear State Space Aircraft Model

The nonlinear equations of motion for an aircraft can be written in state-space form

as follows:

ẋac (t) = a(xac (t) ,uac (t) ,z (t) ,t)+ b(xac (t) ,uac (t)) (1)

y
ac

(t) = c(xac (t) ,uac (t) ,z(t) ,t) , (2)

where xac is the state vector, uac is the control input vector, y
ac

is the output vector

and z is the disturbance vector. The functions a(), b() and c() model the nonlinear

state dynamics and measurements. This 6 degree of freedom model is linearized for

horizontal flight, with respect to the state vector xac, the control input vector uac,

the output vector y
ac

and the disturbance vector z, resulting in the following linear

state-space representation,

ẋac = A
ac

xac + B
ac

uac + E
ac

z+ ξ
ac

(3)

y
ac

= C
ac

xac + F
ac

z+ ζ
ac

, (4)

with process noise ξ
ac

used to model system and observation noise ζ
ac

to model

measurement uncertainties. The vector elements for the longitudinal motion are:

xac =

⎡

⎢

⎢

⎢

⎢

⎣

qK

αK

VK

Θ
H

⎤

⎥

⎥

⎥

⎥

⎦

; uac =

[

ηF

η

]

; y
ac

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

qK

α
VA

VK

Θ
H

Ḣ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; z =

[

αW

uW

]

; ξ
ac

=

⎡

⎢

⎢

⎢

⎢

⎣

ξqK

ξαK

ξVK

ξΘ

ξH

⎤

⎥

⎥

⎥

⎥

⎦

; ζ
ac

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ζqK

ζα

ζVA

ζVK

ζΘ

ζH

ζḢ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The aircraft states are body axis pitch rate qK , kinematic AOA αK , flight path ve-

locity VK , pitch angle Θ and altitude H. The output vector consists of the body axis
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pitch rate qK , the AOA α , the airspeed VA, the flight path velocity VK as well as

the pitch angle Θ , the altitude H and the vertical speed Ḣ. Input is the elevator de-

flection η as well as the thrust power setting ηF . Wind-induced AOA αW and the

horizontal wind velocity uW are the disturbances. Process noise ξ
ac

is assumed to

be zero mean Gaussian white noise with covariance Q
ac

. Observation noise ζ
ac

is

assumed to be zero mean Gaussian white noise with covariance R
ac

.

R
ac

= diag2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.166×π
180 rad/s
0.25×π

180 rad

0.009 m/s

0.009 m/s
0.25×π

180 rad

0.0001 m

0.027 m/s

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Q
ac

= diag2

⎡

⎢

⎢

⎢

⎢

⎣

0.166×π
180 rad/s2

0.25×π
180 rad/s

0.009 m/s2

0.25×π
180 rad/s

0.0001 m/s

⎤

⎥

⎥

⎥

⎥

⎦

(5)

The model is derived for horizontal flight for a reference state of VA = 50 m/s,

H = 100 m, no wind and a reference flight path angle γ = 0◦.

2.3 Disturbance Model

The Dryden Turbulence Model is an approximation of real gust Power Spectral

Density (PSD). To generate the PSD for simulation purpose, zero mean Gaussian

white noise r(t) with covariance I is shaped through a Dryden filter as shown in Fig.

1. For vertical and horizontal turbulence the transfer functions are given by (6) and

(7), where σ is the standard deviation, L is the characteristic wave length, ω is the

characteristic cut off frequency and T the characteristic time constant. The variable

wW specifies the vertical and uW the horizontal wind component.

white noise
source

Dryden
Filter

r(t) w (t), u (t)
W W

Fig. 1 Turbulence simulation

F̂wW
(s) =

√

σ2
wTw

1 + s
√

3Tw

(1 + sTw)2
; Tw =

Lw

VK

=
1

ωw

(6)

F̂uW
(s) =

√

2σ2
u Tu

1

(1 + sTu)
; Tu =

Lu

VK

=
1

ωu

. (7)

The filter characteristics depend on height, terrain roughness and wind speed. The

characteristic values of the Dryden filter for the reference state of VK = 50 m/s,

H = 100 m and moderate turbulence are, according to [9], as follows:

Lw = 100 m, Lu = 260 m, σw = 1 m/s, σu = 1.38 m/s .
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xb

xg

VW

uWg

wWg
VA

VK W

K

Θ

Fig. 2 Velocity vector diagram in the aircraft’s plane of symmetry

The kinematical relation of aircraft and wind states for the longitudinal motion is

given by the velocity vector equation V K = V A +VW and is shown in Fig. 2. The

two components of the wind velocity vector VW g in the geodetic reference frame

are uWg and wW g. Using the relation shown in Fig. 2, the wind-induced AOA αW

can be calculated with (8)1.

sin αW =
wW g

VA

cosγ +
uWg

VA

sinγ . (8)

For horizontal flight (γ = 0◦) and small angles αW is approximately

αW =
wW g

VA

. (9)

Using the linear relation (9) and the transfer functions (6) and (7), the Dryden Tur-

bulence Model can be written in observer state space form as:

ẋDry = A
Dry

xDry + B
Dry

r + ξ
Dry

(10)

z = C
Dry

xDry . (11)

And in detail:

⎡

⎣

δα̇ ∗
W

δα̇W

δu̇W

⎤

⎦ =

⎡

⎣

0 −ω2
w 0

1 −2ωw 0

0 0 −ωu

⎤

⎦

⎡

⎣

δα ∗
W

δαW

δuW

⎤

⎦+

⎡

⎣

σw

VA

√

ω3
w 0

σw
VA

√
3ωw 0

0 σu

√
2ωu

⎤

⎦

[

r1

r2

]

+

⎡

⎣

ξα∗
W

ξαW

ξuW

⎤

⎦

[

δαW

δuW

]

=

[

0 1 0

0 0 1

]

⎡

⎣

δα∗
W

δαW

δuW

⎤

⎦ . (12)

The state α∗
W is an internal state without physical interpretation. Model uncertainties

in the Dryden filter are regarded as process noise ξDry. It is assumed to be zero mean

Gaussian white noise with covariance Q
Dry

.

1 Sign convention as in [10].
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Q
Dry

= diag2

⎡

⎣

5×10−5× π
180 rad/s2

5×10−4× π
180 rad/s

3.5×10−3 m/s2

⎤

⎦ . (13)

2.4 System Model

The aircraft and the disturbance model have to be coupled to become the system

model that is used for filter design. The linear aircraft model (3) and (4) can be

combined with the Dryden Turbulence Model (6) and (7). The system model state

space equations can be written explicitly as follows:

[

ẋDry

ẋac

]

=

[

A
Dry

0

E
ac

C
Dry

A
ac

]

[

xDry

xac

]

+

[

0

B
ac

]

[

uac

]

+

[

B
Dry

0

]

[

r
]

+

[

ξ
Dry

ξ
ac

]

(14)

[

y
ac

]

=
[

F
ac

C
Dry

C
ac

]

[

xDry

xac

]

+
[

ζ
ac

]

. (15)

Since the input vector to the Dryden Turbulence model r is not measureable, the

term
[

B
Dry

0
]⊤

[

r
]

is regarded as a part of the process noise. In short the system

model state space can be written as:

ẋ = A x+ B u+ ξ (16)

y = C x + ζ (17)

with:

ξ =

[

ξ
Dry

ξ
ac

]

+

[

B
Dry

0

]

[

r
]

, ζ = ζ
ac

(18)

Q =

⎡

⎣

Q
Dry

+ diag2

(

[

B
Dry

]

[

1

1

])

0

0 Q
ac

⎤

⎦ , (19)

where Q is the covariance matrix used for filter design.

2.5 Frequency Range Analysis

To identify the frequency range where significant normal accelerations occur and to

define the frequency range, for which the disturbance signal has to be reconstructed

for feed forward gust alleviation, the amplitude response of the aircraft
∣

∣Fnz αW

∣

∣, the

Dryden filter |FαW r1
| and the combination of both

∣

∣Fnz r1

∣

∣ is plotted in Fig. 3. The

characteristic high-pass behaviour of the aircraft can be clearly seen as well as the

low-pass behavior of the Dryden filter. In combination two maxima result, one close

two the Eigen-frequency of the phygoid mode (ωPh = 0.18 rad/s) and the second

close to the short period mode (ωSP = 4.7 rad/s). For gust load alleviation both
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Fig. 3 Amplitude response

maxima are of interest and therefore the disturbance signal has to be reconstructed

up to a frequency range of approximately 10 rad/s. For this analysis aeroelastic and

instationary aerodynamic effects are not taken into account.

3 Kalman Filter

The presented approach uses a Kalman filter to estimate the states of the linear

system model (16) and (17).

The Kalman filter estimates the state vector x by processing the output vector y.

This estimation is generated in two phases. The predict algorithm calculates a value

according to the state equation and estimates the uncertainty of this value. Then

the update algorithm computes a weighted average of the predicted value and the

output value. To receive an optimum estimate, a Kalman gain K is computed for

which the trace of the estimate error covariance matrix P is minimal. The estimate

error covariance matrix is defined as P = E
[

(x− x̂)(x− x̂)⊤
]

, where E denotes the

expectation operator and x̂ the estimated state vector.

The notation used to illustrate the two different phases has two subscripts. The

first subscript indicates the point in time, while the second indicates the process-

ing of the k-th set of measurements. The predict algorithm propagates xk−1|k−1 to

xk|k−1 and the update algorithm propagates xk|k−1 to xk|k. Where only one value is

calculated for a time step, the second subscript is dropped.

Since it is fundamental to software processing and the nature of the Kalman filter,

a discrete system model has to be used. Therefore the continuous linear system

model (16) and (17) is discretized. This is done using a zero-order hold and results

in the following equations.

xk+1 = F xk + G uk + ξ
k

(20)

y
k

= H xk + ζ
k

. (21)
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Aircraft
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acx

Dry
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z

acy

r

-

z
-1

Kalman Filter
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F

K = f(P , T, H)k k|k-1

xk|k

xk|k-1
^

^

Predict (state) Update (state)

xk-1|k-1
^

P = f(S, F)k|k-1

Plant

+
+

+

+

+

+

+

Fig. 4 Block diagram of plant and Kalman filter

The equations for the predict and update steps for the state vector and the estimate

error covariance matrix are:

Predict:

x̂k|k−1 = F x̂k−1|k−1 + G uk (22)

P
k|k−1

= F P
k−1|k−1

F⊤ + S (23)

Update:

K
k

= P
k|k−1

H⊤
(

T + H P
k|k−1

H⊤
)−1

(24)

x̂k|k = x̂k|k−1 + K
k

(

y
k
−H x̂k|k−1

)

(25)

P
k|k

=
(

I−K
k

H
)

P
k|k−1

(26)

with S and T being the discrete process and observation noise derived from the pro-

cess and observation noise described in Sect. 2.4. In addition, the Kalman filter can

estimate constant errors (bias) in the measurement . The bias bk can be interpreted

as an additional input vector in the output equation (21) with the new feedthrough

matrix D̃. Since bk is a constant vector a new equation is added to the system model.

xk+1 = F xk + G uk + ξ
k

(27)
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bk+1 = bk (28)

y
k

= H + D̃ bk + ζ
k

. (29)

Equations (27) - (29) can be written in state space representation of the following

form:

[

xk+1

bk+1

]

=

[

F 0

0 I

][

xk

bk

]

+

[

G

0

]

[

uk

]

+

[

I

0

]

[

ξ
k

]

(30)

[

y
k

]

=
[

H D̃
]

[

xk

bk

]

+
[

ζ
k

]

. (31)

Equations (30) and (31) are of a form on which the Kalman filter is applicable. The

block diagram in Fig. 4 shows the structure of the system model and the Kalman

filter. For simplification, the propagation of the estimate error covariance is not ex-

plicitly shown in the block diagram.

4 Algorithm Using Simplified Flight Mechanic Relations

For the longitudinal motion the following equation is exact as shown in Fig. 2

αW = Θ − γ −α . (32)

Due to measurement quality the flight path angle is approximated by γ ≈ arcsin
(

Ḣ
VA

)

.

With this approximation the estimation equation for αW reads

αW DLR ≈Θ − arcsin

(

Ḣ

VA

)

−α . (33)

This estimation was successfully implemented in a gust load alleviation system by

the German Aerospace Center (DLR) [8] and is here used for comparison to the

presented algorithm.

5 Simulation Results

The system model and the Kalman filter, as shown in Fig. 4, were implemented in

Simulink. The simulation sample time was 0.016 s. Fig. 5 - Fig. 7 show simulation

results for the derived system model, the Kalman filter and the simplified flight

mechanical approach. The aircraft is in trimmed condition, disturbed by Dryden

turbulence as well as discrete 1− cos gusts for αW (t = 10 s and t = 70 s) and uW

(t = 50 s) and responding to elevator deflection. Simulated states of the real system

are labeled with the index “real”, estimated states with “est” and the simplified flight

mechanical approach with “DLR”. The strength of observation and process noise is

as defined in Sects. 2.2 and 2.3. The simulations were performed on a standard PC.
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Fig. 6 Error analysis of the turbulent states and their estimates

The not directly measurable turbulence states and the bias state (αbias = 1◦; t = 50

s) are compared with their estimates in Figs. 5 and 6.

Fig. 6 shows time histories of the error (∆ = xreal − xest) between the state vari-

ables and their estimates and relative frequency distributions of the error. The dot-

ted lines indicate the mean value and the dashed lines the standard deviations of

the error. The standard deviation, calculated from the trace of the estimation error

covariance matrix σcov is shown for the estimations computed by the Kalman filter

and is a measure for the quality of estimation. The correlation between the turbu-

lence states, the bias and the estimated states computed by the Kalman filter show
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Fig. 7 Fourier Analysis of αW (left) and uW (right) and their estimation

to be sufficient for gust load alleviation. The simplified flight mechanical approach

estimates the wind induced AOA well up to the occurrence of the bias in the AOA

measurement. Due to this bias the relative frequency distribution for the estimated

wind induced AOA error is broad and flat.

Fourier analysis in Fig. 7 shows a broadband correlation of the estimated turbu-

lence states and the simulated states which emphasises the correlation seen in the

time histories. The frequency range requirement derived for gust load alleviation,

i.e. good agreement between real and estimated turbulence up to 10 rad/s, is easily

met.

6 Conclusion

The application of a discrete Kalman filter using a combination of a linear aircraft

model and the Dryden Turbulence Model to estimate the not directly measurable

wind states has proven to be feasible and shows better results than an algorithm

using simplified flight mechanical relations. Simulation results show a good and

broadband correlation between the states and their estimates up to the short period

mode which is sufficient for gust load alleviation. The estimations are robust against

variations of the disturbance model and a bias in the AOA measurement.

For operational use in an aircraft this approach shall be developed further using

an extended Kalman filter (EKF) based on the described concept and a non-linear

aircraft model. The EKF has to be carefully tuned by observation and minimizing

of the estimation error covariance matrix. The observability of each state under dif-

ferent conditions, e.g. no turbulence, has to be analyzed.
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Interval Analysis as a System Identification Tool

E. van Kampen, Q.P. Chu, and J.A. Mulder

Abstract. This paper shows how the theory of interval analysis can be utilized

for system identification by applying it to two aerospace related problems. Interval

numbers form an extension of the regular crisp numbers and they were first intro-

duced in the 1960’s to investigate how rounding errors propagate through systems

implemented on digital computers. Since then interval analysis is mainly used as a

tool for solving global nonlinear optimization problems where it is one of the few

methods that can guarantee to find the global minimum of any nonlinear cost func-

tion. Here the properties of intervals are employed for system identification tasks.

The first application is optimization of human perception modeling, i.e. identifying

how a human pilot perceives visual cues and motion cues, based on the pilot in-

put and output. In the second example trim points of a nonlinear aircraft model are

identified simultaneously, with the guarantee that all trim points are found.

1 Introduction

System identification is a crucial part in many engineering problems. An example

is in adaptive flight control, where an online aerodynamic model is required by the

controller to adapt its control strategy after a structural failure or a control surface

failure. System identification consists of defining a model structure (Fig. 1) and then

optimizing the parameters in this model such that the model approximates the true

system as closely as possible:

y = f (x) ŷ = f (x;p) min
p∈P

J (p) = ‖y− ŷ(p)‖ (1)

with x the input vector, p the parameter vector, y the true system output, and ŷ the

model output.

E. van Kampen · Q.P. Chu · J.A. Mulder

Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft,

The Netherlands

e-mail: E.vanKampen@TUDelft.nl,Q.P.Chu@TUDelft.nl,

J.A.Mulder@TUDelft.nl

E.vanKampen@TUDelft.nl, Q.P.Chu@TUDelft.nl,
J.A. Mulder@TUDelft.nl


334 E. van Kampen, Q.P. Chu, and J.A. Mulder
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Fig. 1 First step of system identification: selecting the model structure.

This equation shows that system identification is a minimization problem that,

depending on the model structure, can be nonlinear and have multiple local minima.

A large number of methods is available to solve these types of problems, from which

gradient-based methods and genetic algorithms are among the most frequently used.

With gradient based methods are meant any algorithm that directly or indirectly

uses the slope of the cost function to find a (local) minimum. Some algorithms use

this slope or gradient directly, such as the Newton method, while others still use

slope information in a more subtle way. The Nelder-Mead algorithm[1] for example

compares the function evaluations of the vertices of a given simplex and acts based

on the ordering of these function evaluations, which can be seen as an indirect way

of using slope information without explicit evaluation of the cost function derivative.

Genetic Algorithm[2] optimization methods are based on principles of biological

evolution, such as natural selection and genetics. Both gradient-based optimization

methods and genetic algorithms can get stuck in a local minimum of the cost func-

tion and their solution depends on the initialization of the algorithm. With a different

starting point or population, a different solution can be found, and it is not possible

to determine when the global minimum of the cost function has been reached.

In this paper interval methods are applied to the optimization problem. Interval

methods are guaranteed to find the global minimum of the cost function, resulting

in the optimal set of parameters.

1.1 Interval Analysis

Interval numbers are an extension of the regular numbers and consist of a lower

bound, an upper bound, and all the real numbers in-between these bounds.

[x] = [a,b] = {x∗ ∈ R |a � x∗ � b} (2)

inf([x]) = a (3)

sup([x]) = b (4)

Interval analysis was introduced in the 1960’s by Ramon Moore[3], who used it

to analyze how rounding errors propagate on limited precision digital computers.

Later, interval analysis was found to be an excellent tool for solving global nonlinear

optimization problems[4].
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The basic arithmetic operations on interval numbers are defined as:

[x]♦ [y] = {x∗♦y∗ |x∗ ∈ [x] ,y∗ ∈ [y]} (5)

[a,b]+ [c,d] = [a + c,b + d] (6)

[a,b]− [c,d] = [a−d,b− c] (7)

[a,b] · [c,d] = [min(ac,ad,bc,bd) ,max(ac,ad,bc,bd)] (8)

[a,b]

[c,d]
= [a,b] · [1/d,1/c] i f 0 /∈ [c,d] (9)

All interval arithmetic operations are based on the inclusion principle, sometimes

referred to as the fundamental theorem of interval analysis, which states that the

outcome of the operation on a subset of the input interval arguments is included in

the outcome of the operation performed on the complete input intervals. The subsets

can be smaller intervals or crisp numbers (thin intervals):

x∗1 ∈ [x1] ,x
∗
2 ∈ [x2] , ...,x

∗
n ∈ [xn] ⇒

f (x∗1,x
∗
2,...,x

∗
n) ⊂ [ f ([x1],[x2],...,[xn])]

(10)

The next section explains how these interval numbers are used to solve global opti-

mization problems.

Define initial search space [ ]p

Evaluate cost function: [J] [J]

[ ]p

[ ]p [J]

Add to list of sub boxes

Pick first (top) box from the list

Stopping criteria met?
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[ ]p [ ]p

[ ]p [ ]p
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Box contraction algorithms

[ ]p1
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[J ]1
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[J ]1

[J ]2

[J ]k

J*min
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Fig. 2 Branch and bound algorithm for interval optimization.
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1.2 Interval Optimization

Two key aspects of interval analysis play role in optimization: inclusion and subdivi-

sion. The interval inclusion theorem allows an infinite set of consecutive parameters

to be evaluated as one bounded interval, ensuring that all possible outcomes are in-

cluded in the interval outcome. Interval subdivision, often called box splitting, is

the process of subdividing an interval into subintervals and thereby reducing the

dependency effect, which is the overestimation that can occur when working with

interval numbers. The combination of division(branching) and inclusion(bounding)

is proceduralized in the so-called interval branch and bound methods. Branch and

bound methods form the backbone of all interval optimization algorithms[5]. Fig-

ure 2 shows a schematic diagram of an interval branch and bound algorithm that is

guaranteed to find the minimum of a nonlinear cost function.

Figure 3 shows an example of interval optimization using the branch and bound

method. First the domain is subdivided and the cost function is evaluated, using

interval arithmetic operations, over each sub-interval. The lowest cost function esti-

mate ρ is set as the lowest upper bound of these function evaluations. Next, interval

boxes in the domain that lead to an interval cost function evaluation with a lower

bound higher than ρ can be removed from the search space. This process is repeated

until the global minimum is found.

Some examples of applications of interval optimization are found in the field of

neural network optimization[6] and integer ambiguity resolution[7, 8]

[x]

[xi]

[Ji]
J

x

ρ

Fig. 3 Principles of applying the branch and bound algorithm (hatched boxes can be elimi-

nated based on the minimum cost function value estimate ρ)

2 Human Perception Modeling

The first application is part of ongoing research on the cybernetic approach to

assess simulator fidelity[9]. In order to make flight simulators more realistic, it is
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important to know what pilots see and feel in the simulator and how they react to

these inputs. Therefore models of pilot perception are created using pilot inputs and

responses from both the simulator and a real aircraft (see Fig. 4). With the informa-

tion obtain by comparing these perception models, the motion cueing algorithms of

the simulator can be adapted to increase simulator fidelity.

Fig. 4 SIMONA Research Simulator and Citation II laboratory aircraft of the Delft Univer-

sity of Technology.

Figure 5 gives the multi-loop closed-loop control task that is used to identify the

human perception parameters[10].

Hpχ

Hpe

n

Hc
ft

pilot

--

χe u

χ

fd

Hpe Visual perception channel

Hpχ Motion perception channel

Hc Controlled plant dynamics

ft Target signal

fd Disturbance signal

n Remnant

u Pilot output

e Error signal

χ Controlled state

Fig. 5 Multi-loop closed-loop control task.

The visual and motion channels are described by:

Hpe ( jω) = Kv (1 + jωTv)e− jωτvHnm ( jω) (11)

Hpχ ( jω) = ( jω)V Hoto ( jω)Kme− jωτmHnm ( jω) . (12)

In the visual perception channel, Hpe, Kv is the visual perception gain, Tv the visual

lead time constant and τv the visual perception time delay. The control action of the

pilot is limited by the neuromuscular dynamics Hnm. The physical motion perception

channel, Hpχ , includes the dynamics of the otoliths Hoto, the motion perception gain

Km and a motion perception time delay τm.

Some of these parameters can be obtained from previous research, leaving the set

of parameters that needs to be identified as:

p =
[

Kv Tv τv Km τm

]T
(13)
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The identification is performed in two steps. In the first step, non-parametric fre-

quency response functions are estimated from the time domain data. The non-

parametric frequency response functions can be estimated by using Fourier coef-

ficients or linear time-invariant (LTI) models (e.g. autoregressive exogenous (ARX)

models) and are used in the second step to fit a multimodal pilot model by adjusting

the parameters. In the second step, a comparison is made between gradient-based

optimization and interval optimization, see Fig. 6.

ARX

Time domain
input/output

Discrete freq.
response function gradient

based
optimization

Continuous freq.
response function

ARX

Time domain
input/output

Discrete freq.
response function interval

based
optimization

Continuous freq.
response function

comparison

Fig. 6 Two-step identification.

The cost function for this problem is:

J = ∑
ω

∣

∣Ĥpe ( jω)− H̃pe ( jω ,P)
∣

∣

2

σ̂2

|Ĥpe|

+

∣

∣Ĥpχ ( jω)− H̃pχ ( jω ,P)
∣

∣

2

σ̂2

|Ĥpχ |

, (14)

with:

Ĥpe ( jω) Discrete frequency response for the visual channel

H̃pe ( jω ,P) Parameterized frequency response for the visual channel

Ĥpχ ( jω) Discrete frequency response for the motion channel

H̃pχ ( jω ,P) Parameterized frequency response for the motion channel

Table 1 gives the results of the comparison between the interval branch and bound

algorithm and the gradient-based optimization.

Table 1 Solution of the gradient-based optimization method for the baseline condition and

several initial starting points.

x0 (0) x0 (1/4) x0 (1/2) x0 (3/4) x0 (1) Interval

Kv 0.6058 0.6058 0.6058 0.6058 0.6058 [0.6057,0.6059]

Tv 0.0921 0.0921 0.0921 0.0921 0.0921 [0.1518,0.1522]

τv 0.2621 0.2621 0.2621 0.2621 0.2621 [0.2620,0.2622]

Km 0.0001 0.0005 0.0001 0.0004 0.0004 [0.0011,0.0012]

τm 0.0001 0.6706 0.0001 1.0000 1.0000 [0.3047,0.3048]

J 24.2229 23.0905 24.2229 23.4161 23.4161 [18.3237,18.3731]

As initial condition for the gradient-based optimization, 5 different points are

selected, denoted by x0 (0) to x0 (1), which means 5 points are chosen that are

equally distributed from one side of the search space x0 (0) to the other side of
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Fig. 7 Comparison between pilot visual(Hpe) channel and motion(Hpχ ) channel frequency

response functions for gradient-based optimization(GB) and interval optimization(IA).

the search space x0 (1). The interval results are presented in the last column. Clearly

the cost function J obtained with the interval methods is lower than those found

by gradient-based optimization, which indicates that local minimums are present

in the cost function and that the gradient method can get stuck here. Figure 7 con-

firms these results by showing that the frequency response functions found by the

interval method(IA) are closer to the target(ARX) than those found by the gradient

method(GB).

3 Aircraft Trim

The second application concerns identification of the trim points of aircraft. Trim

points are defined as those combinations of states and controls for which the trans-

lational and rotational accelerations of the aircraft are zero. Analysis of the trimmed

or steady state equations of motion of an aircraft is an important and essential part

of the design phase, in particular for the control system. By examining the relation

between the steady state control inputs and the flight conditions, the stability prop-

erties of the aircraft can be determined. Finding the solutions to the steady state



340 E. van Kampen, Q.P. Chu, and J.A. Mulder

equations of motion for nonlinear aircraft models is a global nonlinear optimization

problem.

The equations of motion of the aircraft model that is examined here are [11]:

u̇ = rv−qw−gsinθ +
qdS

m
CX +

T

m

v̇ = pw− ru + gcosθ sinφ +
qdS

m
CY

ẇ = qu− pv + gcosθ cosφ +
qdS

m
CZ

ṗIX − ṙIXZ = pqIXZ −qr (IZ − IY )+ qdSbCl

q̇IY = pr (IZ − IX)−
(

p2 − r2
)

IXZ + qdScCm − rHeng

ṙIZ − ṗIXZ = pq(IX − IY )−qrIXZ + qdSbCn + qHeng

where u,v,w are the translational velocities and p,q,r the rotational velocities. Con-

verting this equation to interval notation and substituting the control and aerody-

namic coefficients, in this case for an F-16 model, yields the following set of interval

equations:

[ f1] = −gsin([θ ])+ qdS
m

[
CX0

([α] , [δe])
]
+ 1000

m
[T ]

[ f2] = gcos([θ ])sin([φ ])

+ qdS
m

(
−3.50 ·10−4 [β ]+ 1.83 ·10−5 [δa]+ 5.0 ·10−5 [δr]

)

[ f3] = gcos([θ ])cos([φ ])+ qdS
m

([
CZ0

([α])
](

1− [β ]2
)
−1.33 ·10−4 [δe]

)

[ f4] =
[
Cl0 ([α] , [β ])

]
+

[
∆Cl,δa

([α] , [β ])
]
[δa]+

[
∆Cl,δr

([α] , [β ])
]
[δr]

[ f5] =
[
Cm0

([α] , [δe])
]
+

(
xc.g.re f − xc.g.

)[
CZ0

([α])
](

1− [β ]2
)

−
(
xc.g.re f − xc.g.

)
1.33 ·10−4 [δe]

[ f6] =
[
Cn0

([α] , [β ])
]
+

[
∆Cn,δa

([α] , [β ])
]
[δa]+

[
∆Cn,δr

([α] , [β ])
]
[δr]

− c
b

(
xc.g.re f − xc.g.

)(
−3.5 ·10−4 [β ]+ 1.83 ·10−5 [δa]+ 5 ·10−5 [δr]

)

[ f7] = cos([α])cos([β ])sin([θ ])− sin([α])cos([β ])cos([φ ])
−sin([β ])sin([φ ])cos([θ ])

(15)

where [ f1] to [ f6] are the accelerations that we try to get to zero and [ f7] a kine-

matic constraint for horizontal flight. The aerodynamic and control coefficients

CZ0
,Cl0 ,∆Cl,δr

, ∆Cl,δa
,Cm0

,∆Cn,δr
,∆Cn,δa

are stored in data tables and an interval

interpolation method (see fig. 8) is required to get these coefficients as intervals.

Although table based data is used here, any type of aerodynamic model parameteri-

zation can be used, for example using multivariate splines [12], as long as the values

can be bounded by interval functions.
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returns an interval constructed from the lowest

and highest value of the evaluation of the marked points.

The parameter vector for this problem consists of the angle of attack, elevator

deflection, thust level, sideslip angle, aileron deflection, rudder deflection, and pitch

angle:

[P] = ([α] , [δe] , [T ] , [β ] , [δa] , [δr] , [θ ])

The goal is to find the values of these parameters such that the total acceleration of

the aircraft is minimized:

J =
7

∑
i=1

‖[ fi]‖
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Fig. 9 Comparison between interval-trim (IA) and SQP-trim for the case of horizontal level

flight with fixed thrust.
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The interval branch and bound algorithm deletes parts of the search space that do not

result in zero acceleration and therefore cannot contain a trim point. A comparison

is made between the interval trim algorithm and the well known sequential quadratic

programming (SQP) trim algorithm. Figure 9 gives the result of this comparison for

the case of level horizontal flight with fixed thrust. It is well known that aircraft can

have two distinct trim points for fixed thrust, one where the airspeed is high and

angle of attack low, and one where the airspeed is low and the angle of attack is

high. This latter trim point is in what is called the backside of the power curve. With

SQP, only a single trim point is found for each thrust setting, while with the interval

method, both trim points are found simultaneously. The SQP method relies on an

initial guess, and by changing this guess the other trim point can be found. However,

the problem with conventional trim methods is that it is unclear when all trim points

are found. There might always be a different initial guess leading to another trim

point. With interval trim this problem is resolved, since it can be guaranteed that all

trim points are found simultaneously.

4 Discussion on the Implementation of Interval Methods

There are several software packages available that can perform interval operations.

For the results in this paper the INTLAB[13] toolbox for MATLAB by S.H. Rump is

used. From the definition of the basic interval operations (eq.5), it can be concluded

that interval operations require more computation effort than crisp operations, rang-

ing from double the number of computations for addition and subtraction, up to 8

times as many computations for multiplication and division. Additionally, the nature

of the branch and bound algorithm can lead to an exponential growth in computation

effort with an increase in the number of parameters, although this is not necessarily

the case.

As a consequence, interval optimization algorithms will require more computa-

tional effort than their crisp counterparts. Whether to choose for an interval opti-

mization method, depends very much on the application and the need for a guaran-

teed solution. If the latter is more important than the computation time, then interval

methods should be considered. As an indication of the increase in computation time,

the results in section 3 on aircraft trim take about 200 times as long to compute with

interval methods. On the other hand, it will take more than one attempt with non-

interval methods to get all the solutions, and even after 200 attempts there is no

guarantee that all the solutions are found.

5 Conclusions

In this paper it is shown that the system identification problem often contains a non-

linear optimization problem. Conventional methods for solving this nonlinear opti-

mization problem can get stuck in a local minimum of the cost function, resulting

in a sub-optimal solution. Interval optimization is based on the inclusion property
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of interval operations and is an excellent tool for global nonlinear optimization. In-

terval optimization is guaranteed to find the global minimum of the cost function.

Two applications of interval optimization are presented. From the first applica-

tion, human perception modeling, it is concluded that interval optimization esti-

mates the parameters of a human perception model better than previously applied

methods. For the second application, identifying aircraft trim points, interval analy-

sis guarantees that all trim points are found.

Overall it can be concluded that interval optimization is a promising method for

system identification problems that contains a nonlinear optimization. However,

when dealing with systems that have a larger number of unknown parameters, or

with cost functions whose evaluation requires many operations, a practical limit of

computional effort will be reached faster by interval optimization methods than by

crisp optimization methods.
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Investigation of the Attitude Error Vector
Reference Frame in the INS EKF

Stephen Steffes, Jan Philipp Steinbach, and Stephan Theil

Abstract. The Extended Kalman Filter is used extensively for inertial navigation. If

initial attitude errors are small, many authors choose to represent the attitude states

as a vector of small angles in the vehicle body frame. Some authors choose to repre-

sent this vector in the navigation frame instead, but the corresponding reduction of

filter performance in the closed loop filter is not discussed. Performance is regained

when switching to an open loop filter, but closed loop filters are widely desired.

This paper investigates this performance reduction. To show the effect, Monte Carlo

simulation results are shown for several cases with a simplified inertial navigation

problem using a closed and open loop filter and attitude states in the body and iner-

tial frames. A qualitative argument is given to explain the effects, which stem from

a state propagation model that poorly reflects the true system model for this case.

A method is proposed to regain performance by using an estimated inertial frame

for the attitude states. This method is only beneficial when the attitude states are

measured indirectly via the velocity state equation. Results with this new frame are

shown and discussed.

1 Introduction

Attitude determination techniques continue to be widely researched [1]. For vehicle

navigation, much of the literature defines a small angle attitude error vector (the
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difference between the estimated and true attitude references) if the attitude error is

expected to be relatively small. This vector is often represented in the body frame,

but some authors choose to use the navigation frame instead. However, a discussion

of the corresponding reduction of filter performance in the closed loop filter has not

been seen by the present authors and is the motivation for this research.

The choice of frame is one factor which determines the complexity of the state

transition and state update equations and the performance of the filter. Other than

simpler state equations, a big advantage of using an inertial navigation frame (or a

slowly changing navigation frame) is seen in real time applications where the filter

corrections are calculated after the reference time of the update[2]. In this case, the

attitude error states are not rotated in the filter propagation step, making the attitude

updates insensitive to the computational and measurement delays. In contrast, if the

body frame is used then the attitude corrections must be transformed to the current

body frame when correcting the attitude states.

Attitude estimates are updated as part of the EKF update routine. In this work

a small angle quaternion defines the error in the estimated attitude quaternion. A

small angle attitude error vector is part of this quaternion and has additive errors to

first order. Crassidis, Markley and Cheng[1], Crassidis[3], Gray[2] and Markley[4]

use attitude errors in the B frame, Farrell[5] and Wendel[6] use attitude errors in the

North-East-Down frame, and Gai[7], Gray[2] and Thompson and Quasius[8] use

an inertial frame. All of these authors simply add the EKF update corrections to

the attitude error estimates, which does not change the frame of the attitude error

vector. If the update does change the frame of the attitude error vector then the

attitude covariance states much be rotated to the new frame.

This paper investigates the use of a small angle attitude error vector in an inertial

frame for an INS using the closed loop EKF. The closed and open loop EKFs are first

presented as background for the discussion. A simple INS problem is then described

where a small angle attitude error vector can be represented in either the inertial or

body frames. System models, measurement models, state vectors and state transition

equations are given for both attitude error representations. Simulation results are

then given, which show the performance of using the closed and open loop EKFs

in combination with both attitude error representations. The degraded performance

of the closed loop EKF with attitude errors in the inertial frame is further analyzed.

A new estimated inertial frame is proposed for the attitude error vector to improve

performance of this case. Simulation results are given for this new case showing

improved performance and are further discussed.

2 Extended Kalman Filter

The EKF is discussed in numerous references [9, 10, 11, 5, 12, 6] and is summarized

here. The EKF can be used in a closed-loop or open-loop manner[12]. The equations

for both methods are listed in Table 1. The notation tk− is used to denote the time

immediately before the updates and tk+ denotes the time immediately after. In the

closed-loop method, corrections to the state estimates are fed back to the current
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Table 1 Summary of continuous-discreet open-loop and closed-loop EKF equations [9, 12].

Equations on the left are only for the closed-loop filter, those on the right are for the open-loop

filter, and the equations in the middle are for both types of filters.

Closed-Loop Open-Loop

System Model ẋ(t) = f (x(t), t)+w(t); w(t) ∼ N (0,Q(t))
Measurement Model zk = hk(x(tk−))+νk; k = 1,2,. . . ; νk ∼ N (0,Rk)

Initial Conditions x(0) ∼ N (x̂(0),P(0)) x(0) ∼ N (x̂(0),P(0)); δ x̂(0) = 0

Other Assumptions E
[

w(t)vT
k

]

= 0; ∀k,∀t

State Propagation ˙̂x(t) = f (x̂(t),t)

Error State Propagation — δ̇ x̂(t) = f (x(t),t)− f (x̂(t),t)
Covariance Propagation Ṗ(t) = F(x̂(t),t)P(t)+P(t)F(x̂(t),t)T +Q(t)

Whole State Update x̂(tk+) = x̂(tk−)+Kk (zk −hk(x̂(tk−))) —

Error State Update — δ x̂(tk+) = δ x̂(tk−)+Kk[zk −hk(x̂(tk−)+δ x̂(tk−))]
Covariance Update P(tk+) = [I −KkHk]P(tk−)

Kalman Gain Matrix Kk = P(tk−)HT
k

[

HkP(tk−)HT
k +Rk

]−1

Definitions
F(x̂(t),t) = [∂ f (x(t),t)/∂x(t)]x(t)=x̂(t)

Hk ≡ Hk(x̂(tk−)) = [∂hk(x(tk))/∂x(tk)]x(tk)=x̂(tk− )

estimated state vector (x̂) during the update routine. The estimated state vector always

represents the most accurate estimate of the states, which allows the most accurate

calculation of the state estimate propagation. In the open-loop method, corrections

to the state estimates are not fed back to the estimated state vector but are instead

added to the current estimated error state vector (δ x̂). The estimated state vector is

corrected with the estimated error state vector to get the most accurate state estimates.

This type of filter is commonly used when the state propagation calculations cannot

be changed directly. For additive errors the error state vector is defined as:

δx(t) ≡ x(t)− x̂(t) (1)

where x is the true (error free) state vector. Note that the Error State Propagation

and Whole State Update equations in Table 1 all assume the errors are additive.

3 Simplified Navigation Problem

The following simplified navigation problem will be used in simulations to compare

the closed and open EKF performance using an attitude error state vector in the

body and an inertial frame. Most INS applications are much more complex than this

example and the performance differences of the frame and filter type choices may be

hidden by other effects. The presented navigation problem is as simple as possible

to highlight the desired effects.

Consider a vehicle at an Earth fixed position with an IMU providing 100Hz mea-

surements of vehicle specific force and angular velocity in the IMU body frame (B)

with no errors. The B frame is the rectangular coordinate system of the IMU mea-

surements. The navigator provides the position, velocity and attitude of the vehicle

in an inertial navigation frame (I). The I frame is defined to be equal to the Earth

Centered Earth Fixed (ECEF) frame at time t = 0. The ECEF frame is centered at
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the Earth’s center of mass with the x-axis extending through the point (0◦ latitude,

0 ◦ longitude), the z-axis extending through the spin axis and the y-axis completing

the right-handed coordinate system. The ECEF frame rotates about the z-axis rel-

ative to inertial at Earth rate (ωEarth = 7.2921159e− 5 rad/s). The Earth rotation

vector in the I and ECEF frame is:

Ω I = Ω ECEF = [0,0,ωEarth]
T (2)

Note that in the following sections the position, velocity, attitude, acceleration and

rotation variables are a function of time. However, the (t) time dependency notion is

dropped to simplify the notation. This notion is only used to indicate discrete time

points or for clarification.

The navigation algorithm calculates the vehicle state over time. The system

model is given as [13, 14] (see Shuster[15] for quaternion algebra definitions):

ṙI = vI (3)

v̇I = T (qI
B)aB + gI

(

rI
)

(4)

q̇I
B =

1

2
qI

B ⊗

[

ωB
IB

0

]

(5)

where rI is inertial position, vI is inertial velocity, qI
B is the B to I frame quater-

nion and T (qI
B) is the equivalent transformation matrix, aB is the measured vehicle

specific force, and ωB
IB is the measured vehicle angular velocity vector with respect

to I in the B frame. ⊗ is the quaternion multiplication operator and quaternions are

represented as a column vector with the scalar element last. For this example the

process noise w(t) is zero for all time. gI is spherical gravity in the I frame and is

calculated using:

gI(rI) = −µrI/
∥

∥rI
∥

∥

3
(6)

where µ = 398600.4418km3/s2 is the standard gravitational parameter for Earth.

The IMU measures the dynamics of the vehicle, which is at a fixed position relative

to Earth. Therefore, the acceleration and rotation are constant in the B frame and:

aB = aB(0) = T (qB
I (0))(Ω I

×Ω I
× rI(0)−gI(rI(0))) (7)

ωB
IB = ωB

IB(0) = T (qB
I (0))Ω I (8)

The error states for rI and vI are additive and follow from eq. (1), but the error state

for the attitude quaternion is multiplicative. To avoid the complications with using a

quaternion in the state vector [1] a new quantity θ will be defined, which is a vector

of small angles representing the attitude error and is approximately additive. θ will

be represented later in both B and I frames, but until then the frame will be kept

general. Consider two general reference frames A1 and A2. The error quaternion in

the A1 frame can be defined as:

pA1
≡ qA1

A2 ⊗ q̂A2
A1 (9)
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For small angular errors:

pA1 ≈ [−θ A1/2,1]T (10)

where θ A1 is a small angle rotation vector in the A1 frame. With this definition, the

state vector is written as:

x ≡
[

rI ,vI ,θ A1
]T

(11)

and the entire error state vector δx is additive.

To derive the system model for θ A1, take the derivative of eq. (9):

ṗA1 = q̇A1
A2 ⊗ q̂A2

A1 + qA1
A2 ⊗

˙̂q
A2
A1 (12)

From Savage [13]:

q̇A1
A2 =

1

2
qA1

A2 ⊗
[

ωA2
IA2,0

]T
−

1

2

[

ωA1
IA1,0

]T
⊗qA1

A2 (13)

Substituting this into eq. (12) and using eq. (9) and eq. (10) gives:

[

−
1
2
θ̇ A1

0

]

≈
1
2
qA1

A2 ⊗

[

ωA2
IA2

0

]

⊗ q̂A2
A1 −

1
2

[

ωA1
IA1

0

]

⊗qA1
A2 ⊗ q̂A2

A1

+ 1
2
qA1

A2 ⊗ q̂A2
A1 ⊗

[

ωA1
IA1

0

]

−
1
2
qA1

A2 ⊗

[

ωA2
IA2

0

]

⊗ q̂A2
A1

[

θ̇ A1

0

]

≈

[

ωA1
IA1

0

]

⊗pA1 −pA1 ⊗

[

ωA1
IA1

0

]

=

[

ωA1
IA1 −

1
2
ωA1

IA1 ×θ A1 −ωA1
IA1 + 1

2
θ A1 ×ωA1

IA1
1
2
ωA1

IA1 ·θ
A1 −

1
2
θ A1 ·ωA1

IA1

]

=

[

−ωA1
IA1 ×θ A1

0

]

(14)

Taking the vector part of this equation and substituting in the I and B frames for A1

yields the two system models:

A1 = I : θ̇ I
≈ 03×1 (15)

A1 = B : θ̇ B
≈−ωB

IB ×θ B (16)

To derive F the system model must first be explicitly stated in terms of the states.

The equation for v̇I must be stated in terms of θ . If A1 = I then, using the Taylor

series expansion for a small angle rotation matrix[16] and eq. (9), eq. (4) becomes:

A1 = I : v̇I = T (pI)aÎ + gI
(

rI
)

≈ (I3x3 − (θ I×)+ 1
2
(θ I×)(θ I×)− . . .)aÎ + gI

(

rI
) (17)

where:

aÎ
≡ T (q̂I

B)aB (18)
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Note that only the frame of a is affected by the rotation, not the length of the vector.

One can think of aÎ as the acceleration in an estimated I frame called Î. Finally, if

A1 = B then the velocity system equation instead becomes:

A1 = B : v̇I = T (q̂I
B)T (pB)T aB + gI

(

rI
)

≈ T (q̂I
B)(I3x3 +(θ B×)− 1

2
(θ B×)(θ B×)+ . . .)aB + gI

(

rI
) (19)

If A1 = I then the system model for the entire state vector f (x(t),t) consists of

eq. (3), eq. (15) and eq. (17). If A1 = B then it consists of eq. (3), eq. (16) and

eq. (19). Calculating the Jacobian gives:

F(x̂(t),t) =

⎡

⎣

03×3 I3×3 03×3

−µ/
∥

∥r̂I
∥

∥

3
I3×3 03×3 Fvθ

03×3 03×3 Fθθ

⎤

⎦ (20)

where 03×3 is a 3×3 matrix of 0’s, I3×3 is the 3×3 identity matrix, and the gravity

term is a first order approximation[5]. For A1 = I the values for Fvθ and Fθθ are:

A1 = I : Fvθ ≈ (I3×3 −
1

2
(θ̂×))(aÎ×)+

1

2
((aÎ × θ̂)×)+ . . . (21)

= (aÎ×) = ((T (q̂I
B)aB)×) (22)

A1 = I : Fθθ = 03×3 (23)

and for A1 = B they are:

A1 = B : Fvθ ≈−T (q̂I
B)

[

(I3×3 −
1

2
(θ̂×))(aB×)−

1

2
((aB × θ̂)×)+ . . .

]

(24)

= −T (q̂I
B)(aB×) (25)

A1 = B : Fθθ = −(ωB
IB×) (26)

where the fact that θ̂ A1 = 03×1 is used to reduce the Fvθ equations.

It is known that the vehicle position is fixed relative to Earth, which is used as

a measurement to update the filter. The velocity in the ECEF frame is then zero,

which can be calculated in terms of the inertial states by subtracting Earth rotation

velocity from the inertial velocity in the ECEF frame [5]. The measurement model

is then:

zk = T ECEF
I (tk)v

I(tk−)− (T ECEF
I (tk)r

I(tk−))×Ω ECEF + νk (27)

where νk ∼ N (0,Rk) and T
ECEFk

I is the I to ECEF transformation defined as:

T ECEF
I (tk) =

⎡

⎣

cos(tk ∗ωEarth) sin(tk ∗ωEarth) 0

−sin(tk ∗ωEarth) cos(tk ∗ωEarth) 0

0 0 1

⎤

⎦ (28)

Calculating the Jacobian gives:
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Hk =
[

(Ω ECEF×)T ECEF
I (tk) T ECEF

I (tk) 03×3

]

(29)

To keep the small angle approximation in eq. (10) as accurate as possible, the esti-

mated value of θ A1 will be fed back to the whole state attitude estimate after each

EKF update in the closed loop case. The notation tk+ will be used to denote the time

after the update and before the feedback, and tk++ will denote the time immediately

after the feedback. Therefore, immediately after the whole state update equation the

following operations are done with the estimated states:

q̂A1
A2(tk++) = [−θ̂ A1(tk+)/2,1]T ⊗ q̂A1

A2(tk+) (30)

θ̂ A1(tk++) = 03×1 (31)

where 03×1 is a 3× 1 vector of 0’s, and q̂A1
A2(tk++) is renormalized to 1 after this

operation. With this method, the estimated small angle vector θ̂ A1 is always 03×1

during propagation. A similar procedure is used by a number of authors[3, 4] and

is often called a “reset” of the attitude states, however without the explicit notation

used here. The effect this has on the true state θ A1 is found by starting with eq. (9)

at tk++ and using eq. (10), eq. (30) and the fact that qA1
A2(tk++) = qA1

A2(tk+) (since the

true attitude is not changed by the feedback) to get:

pA1(tk++) = qA1
A2(tk++)⊗ q̂A2

A1(tk++)

= qA1
A2(tk+)⊗ q̂A2

A1(tk+)⊗ [ 1
2
θ̂ A1(tk+),1]T

≈ [− 1
2
θ A1(tk+),1]T ⊗ [ 1

2
θ̂ A1(tk+),1]T

[

− 1
2
θ A1(tk++),1

]T
≈ [− 1

2
θ A1(tk+)+ 1

2
θ̂ A1(tk+),1]T

θ A1(tk++) ≈ θ A1(tk+)− θ̂ A1(tk+)

(32)

which agrees with earlier statements that θ is approximately additive. There is no

change in the covariance matrix due to these operations since this merely moves

information from one place to another and does not change the statistics associated

with these states[4]. Which means:

P(tk++) = P(tk+) (33)

4 Baseline Simulation Results

Four Monte Carlo simulations are used to give a quantitative measure of the perfor-

mance reduction when using the closed loop EKF with an attitude error vector in the

I frame. Using the closed and open loop EKF algorithms summarized in section 2,

four separate simulations were run on the navigation problem discussed in section

3: closed loop with A1 = B (CLB case), open loop with A1 = B (OLB case), closed

loop with A1 = I (CLI case), and open loop with A1 = I (OLI case).

For every case, the simulation was setup as follows. The filter starts at t = 0 and

ends at t = 10. rI(0) = [6378137m,0,0]T , which is at 0◦ latitude, 0◦ longitude on

Earth’s surface. vI(0) is set to the Earth surface velocity, which is Ω ECEF × rI(0).
qI

B(0) is set to a random quaternion [êsin(α/2),cos(α/2)]T with α ∼ U (0,360◦)
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Fig. 1 RMS attitude error CLI (a), CLB (b), OLI (c) and OLB (d) Monte Carlo simulations.

and ê uniformly random over the unit sphere. The estimated states are set to

r̂I(0) = r(0)+νr, v̂I(0) = v(0)+νv, θ̂ A1(0) = [0,0,0]T , and q̂I
B(0) = p′⊗qI

B, where

νr ∼ N (0,σrI3×3), νv ∼ N (0,σvI3×3), p′ is the quaternion [q1,q2,q3,q4]
T with

q1,q2,q3 ∼ N (0,σ2
θ ) and q4 =

✌

q2
1 + q2

2 + q2
3. P(0) is set to:

P(0) =

⎡

⎣

σ2
r I3×3 03×3 03×3

03×3 σ2
v I3×3 03×3

03×3 03×3 σ2
θ I3×3

⎤

⎦ (34)

where σr = 1m, σv = 0.1m/s, and σθ = 0.07rad (= 4◦). As previously mentioned,

there is no system noise, so w(t) is 0 at all time. There is also no measurement noise

since it is known that the ECEF velocity is exactly zero, but using zero measurement

noise can lead to division by zero in the Kalman gain matrix. Therefore, Rk is set

to (0.001m/s)2I3×3. The state propagation equations are integrated at 100Hz using

forward Euler for eq. (3), forward Euler with rotation correction[14] for eq. (4), a

3rd order quaternion integration method[16] for eq. (5) and the exact solutions for

eq. (15) and eq. (16).
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100 simulations were run for each Monte Carlo and the same set of initial con-

ditions are used for each Monte Carlo. Figure 1 shows the results. For each case at

each time point, the root mean square (RMS) of the attitude errors and the corre-

sponding 1σ values for all 100 simulations are plotted. The position and velocity

errors are all near or below their RMS 1σ values and are not shown.

5 Analysis of Simulation Results

The filter performances for the CLB, OLI, and OLB cases are all as expected; the

RMS errors are all near or below the 1σRMS values. However, the performance of

the CLI case is very poor. After the second measurement update (at 2sec) the error

in attitude is well outside of the 1σRMS boundary. The fact that both open loop cases

perform as expected suggests that the poor performance of the CLI case is related

to feeding back the state corrections in the EKF update routine. The fact that both

cases with A1 = B perform as expected suggests that the CLI performance is also

related to the state transition equations. Both the velocity and attitude propagation

terms depend on the choice of A1, but the attitude terms (eq. (23) and eq. (26)) can be

eliminated as suspect since they do not depend on the state corrections. The velocity

terms (eq. (22) and eq. (25)) contain q̂I
B, which is corrected after every EKF update

with eq. (30). It seems that the velocity terms are causing the CLI performance prob-

lem since the attitude corrections come from updates with velocity measurements.

The following qualitative approach explains why the CLI case inherently has poor

performance in these simulations.

In eq. (22), aB is first transformed with the attitude estimate into the Î frame and

this is used in a cross product matrix which is multiplied with the covariances of θ I

during the EKF propagation1. When the attitude estimate is corrected from the EKF

update the direction of aÎ changes at this instant, even though the direction of aI

did not. In effect, the Î frame changes even though the true attitude does not change

at this instant. This is misinterpreted by the EKF as a change in the acceleration

direction relative to θ I , which causes poor filter performance since this does not

reflect the system model.

In contrast, in eq. (25), aB is first crossed with the attitude state covariances and

then this cross product is transformed with the attitude estimate. Again the attitude

estimate is changed by the update, but the relationship between aB and the attitude

covariance (i.e. the cross product matrix) is not affected. The EKF does not interpret

the attitude update as a change in acceleration, but it does misinterpret it as a change

in the entire cross product. Clearly, the EKF is not sensitive to this misinterpretation

since the performance of the CLB case is OK.

Finally, in the OLI case the attitude corrections are accumulated in the error state

vector instead of updating the attitude estimate. This eliminates the false accelera-

tion direction changes in the CLI case, therefore providing better performance.

1 Additionally, note that crossing two vectors in different frames yields a resultant vector in

an undefined frame.
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The Monte Carlo simulations used a relatively large initial attitude error of σθ =
4◦. As this error is reduced, the size of the attitude updates is reduced and the CLI

case shows increasingly better performance. For the presented simulation setup, an

initial attitude error of σθ ≈ 0.05◦ was found to be the boundary between good and

poor performance for the CLI case, where “good” performance means the RMS

attitude and velocity errors are near or below their respective 1σRMS boundaries.

6 Closed Loop with A1 = Î Case

The cross product in eq. (22) crosses a vector in the Î frame with the covariances of

θ in the I frame. Crossing vectors in two different frames in general does not make

sense because the frame of the product is not defined. A better approach might be

to use some θ Î as the attitude state instead. To show how this simple, yet unconven-

tional change affects the EKF performance, the system model and update equations

will be derived and Monte Carlo results for the resulting system will be shown.

To start, θ Î is first defined as:

θ Î
≡ T (q̂I

B)T (qB
I )θ I (35)

Using eq. (9) this becomes:

θ Î = T ((pI)−1)θ I (36)

This can be further reduced using a Taylor series expansion to:

θ Î
≈ (I3x3 +(θ I

×)−
1

2
(θ I

×)(θ I
×)+ . . .)θ I (37)

θ Î
≈ θ I (38)

It is already known that θ I (and thus pI) are constant during the EKF propagation

from eq. (15). Therefore, the system model for this state must be:

θ̇ Î = 03×1 (39)

To find the system model for velocity combine eq. (17) and eq. (38) to get:

v̇I
≈ (I3x3 − (θ Î

×)+
1

2
(θ Î

×)(θ Î
×)− . . .)aÎ + gI

(

rI
)

(40)

Therefore, the F matrix for this case is the same as in the CLI case. Additionally,

the measurement equations are unchanged since they are not affected by the choice

of A1.

To keep small angle approximations as accurate as possible, the estimated value

of θ Î will be fed back to the whole state attitude estimate after each EKF update,

analogous to the procedure in eq. (30) and eq. (31). Immediately after the whole

state update equation the following operations are done:
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q̂I
B(tk++) = [−θ̂ Î(tk+)/2,1]T ⊗ q̂I

B(tk+) (41)

θ̂ Î(tk++) = 03×1 (42)

As a result, the Î frame changes discretely at the update times. The resulting change

in θ Î is calculated by starting with eq. (36) at tk++ and using parts of eq. (32) and

eq. (36) again to get:

θ Î(tk++)= T ((pI(tk++))−1)θ I(tk++)
≈ T ([ 1

2
θ I(tk++),1]T )θ I(tk++)

≈ T ([− 1
2
θ̂ I(tk+),1]T ⊗ [ 1

2
θ I(tk+),1]T )(θ I(tk+)−θ̂ I(tk+))

≈ T ([− 1
2
θ̂ I(tk+),1]T )(T ([ 1

2
θ I(tk+),1]T )θ I(tk+)−T ([ 1

2
θ I(tk+),1]T )θ̂ I(tk+))

≈ T ([− 1
2
T (pI)θ̂ Î(tk+),1]T )(θ Î(tk+)−θ̂ Î(tk+))

≈ T ([− 1
2
θ̂ Î(tk+),1]T )(θ Î(tk+)−θ̂ Î(tk+))

(43)

The last equation shows that θ Î is not additive because the Î frame changes by

the rotation T ([− 1
2
θ̂ Î(tk+),1]T ) due to the feed back operations. In this case the

covariance matrix must also be updated to reflect the frame change. Therefore, as

a final step in the update routine, a discrete propagation of the covariance matrix

must be done from tk+ to tk++ to change the frame of the attitude covariances. The

discrete form of the EKF propagation equations in Table 1 are[9, 12]:

x̂(tk++) = f (x̂(tk+)) (44)

P(tk++) = Fk+P(tk+)FT
k+ + Qk+ (45)

Fk+ ≡ F(x̂(tk+)) = [∂ f (x(t))/∂x(t)]x(t)=x̂(tk+ ) (46)

The f function does not change rI or vI , but uses eq. (43) for the attitude states.

From the Jacobian of eq. (43), the system matrix is:

Fk+ =

⎡

⎣

I3×3 03×3 03×3

03×3 I3×3 03×3

03×3 03×3 T ([− 1
2
θ̂ Î(tk+),1]T )

⎤

⎦ (47)

and the process noise is Qk+ = 0. The EKF update is finally complete with these last

steps.

A Monte Carlo of 100 simulations, like those discussed in section 4, was done

for the closed loop A1 = Î case to give a quantitative measure its performance. 100

simulations were run and the same set of initial conditions from section 4 are used.

Figure 2 show the results. As with the other simulation results, the root mean square

(RMS) of the velocity errors, attitude errors, and their corresponding 1σ values for

all 100 simulations are plotted. The position errors are not shown because they are

approximately an integral of the corresponding velocity errors and are therefore not

interesting.

The filter performance for this case is similar to the CLB, OLI and OLB cases.

The RMS errors are all near or below the 1σRMS boundaries.
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Fig. 2 RMS attitude error for closed loop EKF with A1 = Î Monte Carlo.

7 Conclusion

The presented work has shown how the choice of the attitude error vector frame

and filter type can effect filter performance. Four separate Monte Carlo simulations

were done for a simplified navigation problem. The filter performance for the CLB,

OLI and OLB cases was as expected, but the performance of the CLI case was

relatively poor. In all cases, the attitude corrections were estimated indirectly via the

velocity measurements with the Fvθ term in the EKF propagation equation. In the

CLI case, the aÎ term in Fvθ changes after the EKF update but the attitude covariance

states are unchanged. The poor performance of the CLI case can be attributed to this

inconsistent modeling.

To avoid the problems with the CLI case, the Î frame was used to represent the

attitude states instead. This case has the same propagation equations as the CLI case,

but uses an additional discrete filter propagation step immediately after the normal

EKF update to rotate the attitude covariance states to the new Î frame. In this case

both the aÎ term in Fvθ and the attitude covariance states are always in the current

Î frame, which fixes the inconsistent modeling problem from the CLI case. Monte

Carlo results for this case show similar performance to the CLB, OLI and OLB

cases.

Most INS systems are much more complicated than the example used in this

work. However, if a filter like the CLI case is used then the inconsistent modeling

issues discussed in this work may degrade performance. For any system, all options

should be considered to find the best choice for the application.
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Nonlinear Filtering Using Sparse Grids

Carolyn Kalender and Alfred Schöttl

Abstract. This paper presents a new nonlinear filtering algorithm applicable in real-

time. Nonlinear filtering problems are mostly solved with the Extended Kalman Fil-

ter which due to the nonlinearities is a suboptimal estimator. Optimal estimates are

provided by Fokker-Planck-Equation in combination with Bayes rule. Conventional

approaches for the numerical solution of this equation suffer from the ”curse of

dimension” and are therefore not applicable in higher dimensions. We use sparse

grids for solving the Fokker-Planck-Equation and present a six dimensional nonlin-

ear problem solved in real-time with this new approach.

1 Introduction

The estimation of the course (and further states) of a manoeuvring target based on

measurements by one or more sensors such as radar stations are considered. This

problem plays an important role in various applications such as in the guidance of

an interceptor missile against an incoming threat. It is well-known that a precise

estimation is crucial for the miss distance or, equivalently, the hit probability. Most

problems of this kind are highly nonlinear.

Let (Ω ,F ,P) be a probability space endowed with a right-continuous filtration

(Ft) and let W and V be a d- and m-dimensional adapted Brownian motion.

The object’s motion is modelled by an adapted stochastic process X = (Xt), Xt ∈
R

d , the dynamics of which are given as the strong solution of a nonlinear stochastic

differential equation

dXt = ft(Xt)dt + σt(Xt)dWt . (1)
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In the continuous time setup, the measurement can be modelled by another stochas-

tic process Y , again defined (up to versions) as a strong solution of the stochastic

differential equation

dYt = gt(Xt)dt + νt(Xt)dVt . (2)

It is well-known (see [7], chapter 8.6) that under appropriate growth conditions such

as (q denotes any of the measurable functions f , σ , g, ν)

‖qt(x)−qt(x
′)‖2 ≤ K‖x− x′‖2

‖qt(x)‖
2 ≤ K(1 +‖x‖2)

a strong solution exists.

As we will see, the filter may also be applied at the discrete update times

dYtk = ht(Xtk )+ νtk(Xtk)Vtk . (3)

By interpreting (1) as a system equation and (2) as a measurement equation, the

problem of estimating the actual state Xt of the object only using measurements Ys≤t

can be seen as a filtering problem: Let FY
t be the filtration generated by Y . We

are considering the problem of finding an optimal (in the L 2 sense) FY -adapted

estimation of X . It can be easily seen that this problem is equivalent to finding the

conditional expectation E(Xt |Ft).
There are various ways of approaching such a problem. The most usual method

is to apply an extended Kalman filter (see e. g. [10]), a method suitable and highly

efficient for systems with modest nonlinearities. Since the extended Kalman filter is

based on linearisations of the system equation, divergence is possible. In addition,

nonsymmetric or multimodal distributions cannot be treated since classical Gaus-

sian theory is applied.

Another widely used method is the particle filter (see e. g. [10]) which uses a

reasonable amount of state samples and propagates them through simulation of the

system. The particles which may be viewed as a discrete distribution approximating

the conditional probability distribution, are assigned normalized weights. An up-

dated approximation is generated by changing the weights with respect to the mea-

surements (e. g. using Bayes formula) . The quality of the approximation is heavily

dependent on the number of particles. As a rule of thumb, the necessary number

of particles grows exponentially with the number of dimensions of the system. This

“curse of dimension” (see [4]) restricts the usage of particle filters to relatively small

dimension numbers. In typical applications however, the dimension d of the sys-

tem state is relatively high (5-10), while the dimension m of the measurement is

moderate (3-6).

It is furthermore well known (e. g. [6]) that only in very special setups it is pos-

sible to calculate the estimate in a closed form with a finite-dimensional system

of equations. Most importantly is the linear case with the Kalman filter which just

needs to update d conditional expectations and
d(d−1)

2 covariances. Since the linear-

ity implies Gaussian conditional distribution, the complete distribution is specified

by these parameters. Other so-called finite dimensional filters are the Beneš [2] and
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the Daum filters [4], which are of upmost theoretical interest but require artificial

and restrictive conditions on f and g. In the vast majority of cases it is necessary to

consider an infinite amount of numbers to specify the whole conditional distribution

of (X | FY ) or to be satisfied with only approximations.

We are assuming that the conditional probability density function (pdf) pt

pt(x) =
∂

∂x
P(Xt ≤ x|FY

t ) ,

which is a measurable function of (t,x), exists.

The analysis of the evolution of the conditional distribution is part of the general

filter theory. Under very mild assumptions, filter formulas such as the Kushner–

Stratonovich equation (see [1] Theorem 3.30) have been developed. The Kushner–

Stratonovich equation is equivalent to a stochastic partial differential equation for

the pdf if the solution of the differential equation exists (see [7], Theorem 8.6). For

details about the existence of the conditional pdf see also Theorem 7.11 in [1]. A

thorough analysis of the conditions and properties of the solution is contained in [8].

It holds

dt pt(x) =

(

−∑
k

∂

∂xk

( ft,k(x)pt(x))+
1

2 ∑
jk

∂ 2

∂x j∂xk

(bt, jk(x)pt(x))

)

dt

+pt(x)
(

ht(x)−E(h(Xt)|F
Y
t )

)(

dYtk −E(h(Xt)|F
Y
t )dt

)

with bt = σt ·σ
T
t .

The right-hand side of this equation may be seen as the sum of a propagation part

(the first line), containing a transport (or advection) term and a dissipation (or diffu-

sion) term, and the innovation part (the second line) which handles measurements.

While the transport term shifts the pdf according to the model, the diffusion term

widens the pdf in time which inserts uncertainty into the estimation. The measure-

ment term will in turn narrow the pdf due to the measurement update.

The discrete time case is similar. The innovation part (which can be seen as an

abstract version of the Bayesian rule) is simply replaced by the classical Bayesian

rule such that the propagation is done via the partial differential equation

dt pt(x) =

(

−∑
k

∂

∂xk

( ft,k(x)pt(x))+
1

2 ∑
jk

∂ 2

∂x j∂xk

(bt, jk(x)pt(x))

)

dt (4)

while measurements y at time t are incorporated separately via

p+
t (x) =

p−t (x)pY |X (y|x)
∫

pY |X(y|z)p−t (z)dz
. (5)

Herein p+
t denotes the conditional pdf of Xt just after the measurement at time t

has been considered, p−t denotes the pdf just before the measurement. For small
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measurement time intervals the discrete time and the continuous time formula be-

come equivalent. In the sequel, we are considering the discrete time formulation.

2 Discretization

Conventional approaches for solving partial differential equations numerically suf-

fer from the ”curse of dimension”. To achieve a given order of approximation the

number of grid points grow exponentially with the dimension such that

|| f − fn|| = O(n−r/d)

for a function f of smoothness r.

The dimension of the filtering problem ranges typically from 5 to 10 and is there-

fore out of reach for real-time applications with regular grid methods. Even the use

of an adaptive grid as shown in [13] for only 4 dimensions could not be implemented

in real time. However, the technique of sparse grids offers a possibility to drastically

lower the number of necessary grid points from O(Nd) to O(N(logN)d−1).
We suggest the use of sparse grids to make the full nonlinear problem in higher

dimension treatable in real-time. The algorithm is split up into three parts. First

the density function is propagated by solving equation (4) on sparse grids. Next, the

density is updated with the actual measurements and then finally the expected values

or other characteristic values (e. g. higher moments) of the conditional distribution

are extracted from the sparse grids.

2.1 Sparse Grids

Sparse grids were first introduced by Zenger [12] and have in the meantime been

widely used e. g. in the area of finance mathematics.

The basic idea is to decompose the space of piecewise multilinear functions in its

hierarchical subspaces and then consider only those for which their contribution to

the interpolation of smooth functions is significant.

For the multilinear basis functions

φl,i(x) =
d

∏
j=1

φl j ,i j
(x j) with φl j ,i j

(x j) = φ(
x j − i jhl j

hl j

), φ(x) =

{

1−|x| x ∈ [−1,1]

0 otherwise
,

where the gridwidth hl j
= 2−l j and the related grid points xl,i with xl j ,i j

= i j ·hl j
on

the level l with the index i, the space of piecewise multilinear functions of level l in

the interior of [0,1]d is given by

Vl = span{φl,i : 1 ≤ i ≤ 2l −1}.

The hierarchical space
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Wl = Vl \
d

⊕

j=1

Vl−e j
= span{φl,i : 1 ≤ i ≤ 2l −1, i j odd ∀ j} (⇒Vl =

⊕

k≤l

Wk)

is given as a set difference from a coarser to a finer grid. Hence for a functional

decomposition

u(x) = ∑
l,i

ul,iφl,i, φl,i ∈Wl

the hierarchical surplus ul,i contains the difference in xl,i between the relative coarser

and finer interpolation. While the number of grid points increases considerably with

the level, it turns out (see Zenger [12]) that the gain in interpolation accuracy is get-

ting comparatively small for smooth functions. The idea of sparse grids is instead

of using a full grid with
⊕

|k|∞≤L Wk only to use the lower level hierarchical sub-

spaces and form
⊕

|k|1≤L+d−1Wk (a tetraeder of subspaces is composed instead of a

quader). L is called the level of the sparse grid. It should be noted that no grid points

are located at the boundary of the domain.

Fig. 1 Hierarchical subspaces Wl , |l|∞ ≤ 3 and sparse grid of level L = 5

Instead of O(Nd) grid points in the regular grid, the sparse grids contain only

O(N(logN)d−1) grid points (N = 1/h = 2L) by having only a slightly smaller order

of interpolation accuracy for smooth functions in the maximum norm (respectively

identical order of interpolation accuracy in the energy norm, for details see e. g. [3]).

Due to these promising properties of sparse grids we will use them in the sequel

for solving the filtering problem numerically in real time for higher dimensions.

2.2 Propagation

Finite differences are used to discretize the propagation equation (4). The advection

part, especially for highly agile targets, forces the localized density to move with

time across a large region in the state domain. It would imply unnecessary high

computational effort to discretize the whole region at every time step. As we will

see, this can be avoided by introducing grid-tiling and grid-drifting.
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2.2.1 Finite Differences

The following finite difference scheme is proposed

• A first order forward scheme for the time derivative

D+
t pt =

pt+Δ t − pt

Δ t
,

∂ pt

∂ t
= D+

t pt +O(Δ t)

• Upwind differences for the advection part

Du
x pt =

⎧

⎨

⎩

pt(x+Δx)−pt(x)
Δx

for ft(x) < 0

pt(x)−pt(x−Δx)
Δx

for ft(x) > 0
,

∂ pt

∂x
= Du

x pt +O(Δx)

• Central differences for the diffusion part

D2
x pt =

pt(x + Δx)−2pt(x)+ pt(x−Δx)

Δx2
,

∂ 2 pt

∂x2
= D2

x pt +O(Δx)

Mixed derivatives are not regarded here but could also be realized by finite differ-

ences. In contrast to regular grids however, there is not a natural grid neighbour in

mixed directions but one can interpolate between different points. For usage pecu-

liarities of finite differences on sparse grids see [9].

All together this gives an explicit first order scheme:

pt+Δ t(x) = pt(x)−Δ t ∑ ft,k(x)D
u
xk

pt +
1

2
Δ t ∑bkkD2

xk
pt (6)

As an explicit scheme it has a timestep condition to be numerically stable. For

Δ t ≤
1

∑
bkk+| ft,k(x)|Δxk

Δx2
k

(7)

the following theorem holds

Theorem 1. The discretization scheme (6) for which (7) holds is stable according

to the von-Neumann stability analysis.

Proof. Apply the argumentation of [11, p. 160] to the multidimensional case.

2.2.2 Tiling

Tiling helps in dealing with pdfs which move and widen due to drift and diffusion

with time. Also Tiling restricts the computational effort to a possibly small subset

of the state domain with a probability close to 1.

In contrast to regular grids it is not natural to expand sparse grids just by adding

a few rows of grid points since this would contradict the hierarchical structure of

those grids. If we want to add or delete grid points we do so by adding or removing

an entire sparse grid.
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To represent a more general area, we cover the relevant region of the domain

with tiles each containing a sparse grid (which does not contain boundary points).

Between the sparse grid tiles we have to add boundary layers as a connection. Those

boundary layers are sparse grids themselves with a lower dimension.

A tile is removed if the integral of the pdf on this tile is below a given threshold. If

on a boundary strip the integral part of the pdf is over a given threshold, a neighbour

tile is then added.

Fig. 2 Tiling examples in two and three dimensions

In regular intervals it is checked if still every tile is necessary and if new tiles are

required.

2.2.3 Drift Compensation

As stated in section 2.2.1, the time stepsize must be limited in order to guarantee the

stability of the scheme. Theorem 1 states that the condition (7) must be fulfilled for

a stable scheme. Note that the magnitude of the drift | ft,k| determines the stability

margin in (7).

In applications, a huge drift term in some dimensions (e. g. the position states in

a tracking application) is likely. Fortunately, the pdf is often well-localized for these

dimensions. A significant improvement can be achieved by modification of the drift

dXt = ( f̄t (Xt)+ c)dt + σt(Xt)dWt (8)

with an appropriate choice of c. Obvious choices are c = E( ft(Xt)|F
Y
t ) or c =

ft(E(Xt |F
Y
t )).

Rearranging the advection term part of equation (4) results in

dt pt(x)+∑
k

ck

∂

∂xk

pt(x) =

(

−∑
k

∂

∂xk

( f̄t,k(x)pt(x))

)

dt

or, discretized by the upwind-scheme,

pt+∆ t(x + c∆ t) = pt(x,t)−∆ t ∑
k

f̄t,k(x)Dxk
pt(x) .
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The spatial shift from x to x + cΔ t is realized by introducing a shift vector v which

is attached to the grid. The numerically treated advection term is just the difference

in drift f̄t = ft − c which should be absolutely smaller than the original drift. This

has an influence on the stability behaviour: a significantly larger step size is then

feasible.

In the implementation, the attached shift vector v is modified as soon as the cal-

culated stability margin falls below the threshold.

2.3 Measurement Update

The pdf is updated using measurements according to Bayes’ rule (5). The multipli-

cation is simply done for every sparse grid point. The denominator is computed by

a piecewise linear interpolation of the integrand which gives a coarse norm value of

the updated pdf.

2.4 Expected Values

Usually, we are not interested in the whole pdf but only in its certain characteristic

properties. For most cases it is reasonable to extract the expected values

Ex =

∫

xpt(x)dx.

Instead of approximating the integrand with piecewise constant or linear functions

as it is done in the normalization of Bayes’ rule, the pdf itself is piecewise interpo-

lated using Gaussian densities in every coordinate direction. With

y = aexp

(

−
1

2

(

x− µ

σ

)2
)

,

the interpolation points (x,y) = (xi, pt(xi)), (x j, pt(x j)) and (xk, pt(xk)), and build-

ing the quotients

hi j = −2ln
pt(xi)

pt(x j)
, ri jk =

hi j

hik

we obtain for three neighbouring grid points xi = x0, x j = x0 +∆x and xk = x0−∆x,

the parameters

µ = x0 +
1

2
∆x

1− ri jk

1 + ri jk

, σ2 = −2
∆x2

hi j

1

1 + ri jk

and accept this interpolation for σ2 > 0 and good conditioned values of µ . All to-

gether we find the expected values by averaging the piecewise values of µ .
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3 Algorithm and Illustration

The algorithm consisting of the parts described above can be summarized as follows:

Algorithm 1. Filtering algorithm

Initialize sparse grid structure and pdf

for every time step do
Compute drift compensation c and shift vector

Solve (4) with difference drift f̄ using finite differences

if measurement available then
Measurement Update

end

Normalization

Compute expected values

if Tile Adapt Time then
Adapt tiles

end

end

For illustrating the algorithm, it is useful to apply it to a two-dimensional ex-

ample. As a model problem we take the undamped pendulum with the following

system equations

ẋ1 = x2

ẋ2 = −c · sin(x1)

and the measurement equation

y1 = x1

with the states angle and angular velocity: x1 = ϕ , x2 = ϕ̇ .

Figure 3 shows contour plots of the pdf at different time instances. The x-

axes ranges from ϕ = 2.73 rad to 4.69 rad, the y-axes from ϕ̇ = −0.38 rad/s to

3.56 rad/s. The Gaussian distribution at t = 0.0 s is initialized with µ = (π ,0.45)T

and σ = (0.1,0.2)T . Afterwards, the pdf moves along its states with time according

to (4). The position of the tiles is marked with squares, the interconnecting layers

are depicted by lines. The grid drift, addition and removal of tiles can be observed

from one time step to the next. Measurement updates were performed at t = 0.3 s

and t = 0.6 s.



368 C. Kalender and A. Schöttl

t = 0.0 s t = 0.1 s t = 0.2 s

t = 0.3 s t = 0.4 s t = 0.5 s

t = 0.6 s t = 0.7 s t = 0.8 s

Fig. 3 Evolution of the pdf for the model problem

4 Example

To show the performance of the sparse grid tracking filter a target with high nonlin-

ear dynamics is considered. In [5] a guidance for an anti-ship missile is proposed

composed of a PN plus a barrel-roll distraction manoeuvre. The target dynamics can

be described with the following nonlinear state equations:
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ẋ1 = −vm cosx5 cosx4

ẋ2 = −
vm

x1
sinx5

ẋ3 = −
vm

x1 cosx2
cosx5 sinx4

ẋ4 =
vm sinx4

x1 cosx5
(1−N− tanx2 sinx5 cosx4 cosx5)−ω

sinx5 cosx4

cosx5

ẋ5 =
vm

x1

(

(1−N)sinx5 cosx4 + tanx2 sin2 x4 cosx5

)

+ ω sinx4

with the states describing the distance x1 = r, the line of sight angles x2 = θL, x3 =
ψL and the angles of the missile velocity with respect to the line-of-sight x4 = ψM ,

x5 = θM . There are three parameters in the model: the value of missile velocity

vm, the coefficient of the proportional navigation N and the angular velocity of the

barrel roll ω . The dimension of the system ranges between five and eight depending

on whether the parameters are known in advance or not. The results shown represent

the case with an estimated ω with ω̇ = 0 and we have therefore a six dimensional

system.

A radar station shall measure the range and LOS angles

Ytk =

⎛

⎝

1

1 0

1

⎞

⎠Xtk + νtk(Xtk)Vtk

with

νtk =

⎛

⎝

100

0.004

0.004

⎞

⎠

at a frequency of 5 Hz. The system noise is given by

σtk = diag(10, 0.3, 0.3, 0.6, 0.6, 1).

The initial state values are assumed to be known except for the noise with a standard

deviation of

σ = diag(100, 0.004, 0.004, 0.1, 0.1, 0.25).

The missile system angles ψM and θM are only very poorly observable. These states

diverge using an Extended Kalman Filter due to the strong nonlinearities. Simulation

results computed in real time in comparison to an EKF are shown in figure 4 for ψL

and ψM . The improved behaviour of the sparse grid filter is obvious and confirmed

by 100 Monte-Carlo runs. Figure 5 shows the RMSE in ψL and ψM . The divergence

of the EKF in ψM causes also bad estimates in the observed states as can be seen

from the RMSE for ψL. The EKF tends to diverge and depends strongly on the

measurement update while the sparse grid filter shows a good performance.
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Fig. 4 Simulation results for ψL and ψM
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Fig. 5 RMSE for ψL and ψM

5 Conclusions

This paper presented a new approach for nonlinear filtering. The full nonlinear fil-

tering problem is solved by a probability density function in which the time evolu-

tion is determined by a partial differential equation for prediction and Bayes’ rule

for measurements. The technique of sparse grids was used for the discretization of

the continuous problem and provided an algorithm applicable in real-time also for

higher dimensions. The discretization was done by finite differences on the sparse

grids for which tiling and grid drifting to increase efficiency and accuracy was in-

troduced. The estimated state values were extracted using piecewise interpolation

with Gaussian densities. The performance of the new algorithm was shown on a

six dimensional nonlinear problem in comparison to an EKF. The algorithm was

applicable in real-time and showed a better performance than the EKF.
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Observability of Star Tracker / Gyro Based
Attitude Estimation Considering Time-Variant
Sensor Misalignment

Stefan Winkler

Abstract. The fusion of measurements from star trackers and gyroscopes within

optimal estimators/filters is a common approach for spacecraft attitude determina-

tion. For applications where filter tuning is not sufficient to account for unmodelled

deterministic errors, state augmentation is often the method of choice. So also here,

where the focus is on deterministic time-variant misalignment between star tracker

and gyroscope unit as this often occurs in missions with repetitive ecplipse and sun

phases. Based on the derived filter dynamics and measurement equations, an observ-

ability analysis is performed. Different practical cases are distinguished to analyze:

(1) which filter states are observable, (2) which only in linear combination and (3)

which not at all.

1 Introduction

Information on the spacecraft attitude is essential for almost every space mission.

A comprehensive survey of the most promising nonlinear methods that have been

developed during the last 25 years is given in [2]. This paper here focuses on sensor

data fusion of star tracker (STR) and gyros, also known as gyro-stellar estimation.

Star trackers and gyros have a number of complementary properties which makes

them interesting for sensor data fusion. E.g. while a star tracker provides low-

frequent long-term stable attitude measurements, the attitude computed from the

high-frequent gyro measurements is only short-term stable. The motivation to fuse

star tracker and gyro is to generate a long-term stable attitude estimate at gyro mea-

surement frequency of attenuated noise compared to the star tracker measurement

and, hence, to optimally bridge periods where no star tracker measurement is avail-

able. In addition to the improved attitude information, the estimator provides an
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estimate of the gyro angular rate bias. The typical extended Kalman filter has 6

states: 3 attitude errors, 3 gyro bias errors. For details see e.g. [1, 2, 5, 6].

Misalignment between star tracker and gyro unit and error in gyro scale factor al-

ways occur. If the spacecraft angular rate vector is constant1 w.r.t. to the spacecraft,

the filter will estimate constant misalignment and scale factor error as part of the

gyro bias estimate. Hence, when the 6-state filter is in steady-state, both constant

misalignment and scale factor error do not influence the attitude estimate anymore.

Performing hereafter an attitude maneuver, where the angular rate vector is not con-

stant anymore, will corrupt the attitude estimate. This fact is important for agile

spacecraft that require high-precision attitude information.

Time-variant misalignment between star tracker and gyro unit is often caused by

temperature changes between sun and eclipse phases during orbit. It can have a sig-

nificant impact on the achievable attitude estimate performance. Hence, it is usually

tried to limit it by specific constructional design, e.g. [3, 10, 11]. The remaining

time-variant misalignment can be considered in the attitude estimation filter.

While time-correlated star tracker measurement noise can be well considered by

appropriate filter tuning2, the attitude estimate accuracy degradation due to (deter-

ministic) time-variant star tracker / gyro unit misalignment can not sufficiently be

compensated with this method for high-precision attitude determination. It is rather

useful to augment the common 6-element filter state vector by the time-variant mis-

alignment states [9, 10]. This paper focuses on the observability of such state aug-

mented filters.

2 Attitude Difference Differential Equation

2.1 Attitude Representations

This section summarizes the attitude representations, their nomenclature and re-

lations as used throughout this paper. For a thorough review see [8] and for one

regarding attitude estimation with Kalman filtering [6].

2.1.1 Quaternion

An attitude or unit quaternion, q, here shortly denoted as quaternion, describes a

single-axis rotation about the Euler-axis (unit vector e) about the rotation angle ψ

q =

[

e sin ψ

2

cos ψ

2

]

=

[

q

q4

]

(1)

where q is its vector element and q4 its scalar element. A quaternion obey the unit

length constraint |q|
2

+ q2
4 = 1 . The quaternion q21 describes the rotation from an

1- into a 2-frame and, hence, the attitude of a 2- w.r.t. an 1-frame.

1 In amplitude and direction.
2 Adaptation of the measurement error covariance matrix in the filter.
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2.1.2 Gibbs Vector

The Gibbs vector3, g, is defined using quaternion such that

g = q/q4 = e tan(ψ/2) = a/2 (2)

where a is used throughout this paper as Gibbs vector representation. It clearly is

equal to twice the Gibbs vector g. For small rotation angles ψ, one can write

a ≈ eψ = [ψx ψy ψz]
T

(3)

where ψx, ψy and ψz is the rotation angle about the x-, y- and z-axis, respectively.

Hence, a becomes the rotation vector.

In this paper, the vector a21 describes the rotation from an 1- into a 2-frame and,

hence, the attitude of a 2- w.r.t. an 1-frame.

2.1.3 Direction Cosine Matrix

Considering a sequential 3-2-1 rotation about the small angles δΨ , δΘ and δΦ, re-

spectively, leads to the direction cosine matrix

T = I − δT (4)

where δT is a skew-symmetric matrix, namely

δT =

⎡

⎣

0 −δΨ δΘ
δΨ 0 −δΦ

−δΘ δΦ 0

⎤

⎦ =

⎡

⎣

δΦ
δΘ
δΨ

⎤

⎦

×

= δφ× . (5)

A direction cosine matrix T21 describes the rotation from an 1- into a 2-frame and,

hence, the attitude of a 2- w.r.t. an 1-frame. A vector given in components of an

1-framce, v1, is transformed into a 2-frame, v2, by v2 = T21v1.

2.2 Theoretical Derivation

Considering the attitude between body- and inertial frame (subscript b and i, resp.),

the attitude kinematics equation using quaternions is given by

q̇bi =
1

2

[

ωib
b

0

]

⊗ qbi (6)

=
1

2
̟ib

b ⊗ qbi (7)

where ωib
b is the angular velocity of b- w.r.t. i- in the b-frame and ⊗ is the quaternion

multiplication introduced in [5].

3 Also known as Rodrigues parameters.
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Analogous, the attitude kinematics between a second frame (subscript s) and the

inertial frame is

q̇si =
1

2
̟is

s ⊗ qsi. (8)

For the attitude difference quaternion, qbs, which will reflect an attitude error later

on in this paper, one can write

qbi = qbs ⊗ qsi ⇒ qbs = qbi ⊗ q−1
si . (9)

The time-derivative of this attitude difference is

q̇bs = q̇bi ⊗ q−1
si + qbi ⊗ q̇−1

si . (10)

Using the attitude kinematics equations from above leads to

q̇bs =
1

2
̟ib

b ⊗ qbi ⊗ q−1
si + qbi ⊗

(

1

2
̟is

s ⊗ qsi

) −1

(11)

=
1

2
̟ib

b ⊗ qbs −
1

2
qbs ⊗ ̟is

s . (12)

Introducing the Gibbs vector representation abs, which corresponds to qbs, it fol-

lows

ȧbs =
1

2

[

I −
1

2
abs

]

̟ib
b ⊗

[

abs

2

]

−
1

2

[

I −
1

2
abs

]

[

abs

2

]

⊗ ̟is
s (13)

=

(

I +
1

4
absa

T
bs

)

(

ωib
b − ωis

s

)

−
1

2

(

ωib
b + ωis

s

)

× abs. (14)

From now on, only small angular differences between s- and b-frame are assumed.

Hence, abs is the small angular difference between both frames. Using the common

small angle simplifications (sinψ ≈ ψ, c o s ψ ≈ 1, ψψ ≈ 0) leads to absa
T
bs = 0.

Hence, Eq. (14) becomes

ȧbs =
(

ωib
b − ωis

s

)

−
1

2

(

ωib
b + ωis

s

)

× abs. (15)

This is the attitude difference equation in Gibbs-vector notation for small attitude

differences between b- and s-frame.

2.3 Application to Star Tracker / Gyro Fusion

A problem often considered in practice is the determination of the attitude of the

body-frame w.r.t. inertial-frame. This attitude shall be expressed by the quaternion

qbi. If ωib
b is known, starting from an initial attitude, the attitude vs. time can be

determined by integrating the kinematic equation (Eq. (6)). In reality ωib
b is not
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exactly known but it can be measured with an inertial measurement unit (IMU)4.

With the u-frame as the IMU-(fixed-)frame (subscript u), the measurement provided

by the IMU can be modeled as

ω̃iu
u = ωiu

u + bu + wu (16)

where b is the deterministic error and w the stochastic error on the IMU measure-

ment.

If there is an angular velocity between IMU- and body-frame, ωbu, which is the

considered time-variant misalignment, one can write in more detail

ω̃iu
u = ωib

u + ωbu
u + bu + wu. (17)

Obviously, there will be a difference, an error, between the attitude of body- w.r.t.

inertial-frame and IMU- w.r.t. inertial-frame. The linear approximation of this atti-

tude error in Gibbs-vector notation is given by Eq. (15). If this error, namely abs, is

known, the attitude obtained from integrating IMU measurements can be corrected.

Hence, the goal must be to determine abs. For this, Eq. (15) can be integrated. The

expression for the ideal angular rate of the body- w.r.t. inertial frame, ωib
b , is given

using Eq. (17) by

ωib
b = Tbu

(

ω̃iu
u − ωbu

u − bu − wu

)

. (18)

In general, the term ωis
s in Eq. (15) could be the angular rate measured by the

IMU. But to keep the attitude error abs as small as possible, all availabe information

shall be used to correct the IMU measurement and to come with ωis
s as close as

possible to ωib
b . If one would achieve ωis

s = ωib
b in practice, the attitude of the

body-frame w.r.t. the inertial-frame could be reconstracted exactly using the IMU

measurements (despite errors due to numerical integration etc.). To come with ωis
s

as close as possible to ωib
b , it shall be

ωis
s = T̂bu

(

ω̃iu
u − ω̂bu

u − b̂u

)

. (19)

The term T̂bu

(

ω̃iu
u − ω̂bu

u − b̂u

)

is the best available estimate for the seeked an-

gular rate ωib
b , namely ω̂ib

b . Hence, ωis
s = ω̂ib

b . So one can write

ωib
b − ωis

s = Tbu

(

ω̃iu
u − ωbu

u − bu − wu

)

− T̂bu

(

ω̃iu
u − ω̂bu

u − b̂u

)

(20)

and

ωib
b + ωis

s = Tbu

(

ω̃iu
u − ωbu

u − bu − wu

)

+ T̂bu

(

ω̃iu
u − ω̂bu

u − b̂u

)

. (21)

With

ω̂ib
u = ω̃iu

u − ω̂bu
u − b̂u (22)

4 In this paper, IMU is equivalent to gyro unit.
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and the general definition of the error δx of an arbitrary variable x, namely δx =
x̂ − x, for Eq. (20) one can write

ωib
b − ωis

s = (I − δT) T̂bu

(

ω̃iu
u − ω̂bu

u + δωbu
u − b̂u + δbu − wu

)

−T̂buω̂ib
u . (23)

And considering small errors (linear approximation) it follows that

ωib
b − ωis

s = T̂bu δωbu
u + T̂bu δbu − δTT̂buω̂ib

u − T̂buwu. (24)

Furthermore, using Eq. (21), it can be written

(

ωib
b + ωis

s

)

× abs =
[

(I− δT) T̂bu

(

ω̃iu
u − ωbu

u − bu − wu

)

+ T̂buω̂ib
u

]

× abs. (25)

And considering small errors (linear approximation) it follows that

(

ωib
b + ωis

s

)

× abs = 2T̂buω̂ib
u × abs. (26)

So, finally Eq. (15) becomes

ȧbs = −
(

T̂buω̂ib
u

)

×

abs +T̂bu δbu+T̂bu δωbu
u +

(

T̂buω̂ib
u

)

×

δφ−T̂buwu (27)

where δφ is the misalignment error and δωbu
u its rate of change. Clearly, the equal

influence of δbu and δωbu
u on ȧbs can be recognized. Their separation must be

realized with different dynamic models. If the underlying dynamic models are equal,

a separation is not possible. However, there might be applications where the exact

knowledge of δbu and δωbu
u is unimportant. There, the focus is on rejecting the sum

of both from ȧbs no matter what the individual values are.

The state vector of the considered estimator shall be

⎡

⎢

⎢

⎣

abs

δbu

δφ

δφ̇

⎤

⎥

⎥

⎦

(28)

which leads to the corresponding continuous-time system matrix

F =

⎡

⎢

⎢

⎢

⎣

−
(

T̂buω̂ib
u

)

×

T̂bu

(

T̂buω̂ib
u

)

×

T̂bu

0 0 0 0

0 0 0 I

0 0 Fφ̈φ 0

⎤

⎥

⎥

⎥

⎦

(29)

where Fφ̈φ = ∂(δφ̈)/∂(δφ).
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The star tracker measurement q̃bi and the attitude estimate q̂si are used to for-

mulate the filter innovation as quaternion

δq = q̃bi ⊗ q̂−1
si . (30)

It is converted into Gibbs vector formulation, a, for usage in the estimator. Hence,

the measurement matrix of the estimator is

H =
[

I 0 0 0
]

. (31)

3 Observability

3.1 Theoretical Background

This section goes beyond just presenting the well known equation for the observ-

ability matrix. It rather focuses on its interpretation to draw conclusions on the ob-

servability of each system state.

An observer or estimator (e.g. Kalman filter) is often used to determine system

states that cannot or only very difficult be determined. Such states could be the

time-variant misalignment between star tracker and gyro unit. The question rises

if all states can be determined/distinguished using the available sensor and system

information. This leads to the question of observability which was initially defined

by Kalman [4].

Consider a system defined on some time interval T . An initial state x0 = x(t0)
with t0 ∈ T is said to be observable if it is possible to determine x0 using the mea-

surements z over a finite time interval t0 ≤ t ≤ tf , t ∈ T [7]. In other words, if the

system is observable, the state x0 can be reconstructed using the measurements z.

In the following, it shall be distinguished between complete and non-complete

observability. In the former case, each single state of the state vector can be deter-

mined and, hence, distinguished from the other states. In the later, this is true only

for some of the sates. The other states can only be determined in form of linear

combinations of each other or not at all.

Consider the linear time in-variant system of n states with state vector x(t) and

measurement z(t)

ẋ(t) = Fx(t) (32)

z(t) = Hx(t) (33)

and state solution

x(t) = eF (t−t0)x0. (34)

The available information to evaluate x0 can be summarized to
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⎡

⎢

⎢

⎢

⎢

⎢

⎣

z(t)
ż(t)
z̈(t)

...

z(t)(n−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

H

HF

HF2

...

HFn−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

eF (t−t0) x0 (35)

= O eF (t−t0) x0 (36)

= O x(t). (37)

Essential for the determination/observation of x0 (and x(t)) is O, known as ob-

servability matrix. The system is completely observable if and only if Rg(O) = n.

Then, Eq. (36) can be solved for x0 (and Eq. (37) for x(t)).

3.2 Application to Star Tracker / Gyro Fusion

3.2.1 Observability Matrix

With the simplified expressions

T = T̂bu (38)

ω = ω̂ib
u (39)

M = Fφ̈φ (40)

the system matrix in Eq. (29) becomes

F =

⎡

⎢

⎢

⎣

− (Tω)× T (Tω)× T

0 0 0 0

0 0 0 I

0 0 M 0

⎤

⎥

⎥

⎦

. (41)

And assuming small differences between b- and u-frame, hence, T ≈ I, it follows

F =

⎡

⎢

⎢

⎣

−ω× I ω× I

0 0 0 0

0 0 0 I

0 0 M 0

⎤

⎥

⎥

⎦

. (42)

With the measurement matrix, Eq. (31), one can write
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HF = [ −ω× I ω× I ]

HF2 = [ (ω×)
2

−ω× − (ω×)
2
+ M 0 ]

HF3 = [ − (ω×)
3

(ω×)
2

(ω×)
3

M ]

HF4 = [ (ω×)
4

− (ω×)
3
− (ω×)

4
+ M2 0 ]

HF5 = [ − (ω×)
5

(ω×)
4

(ω×)
5

M2 ]
...

... [
...

...
...

... ] .

(43)

From now on, the observability analysis shall focus on spacecraft with angular rate

ω =

⎡

⎣

0
ω
0

⎤

⎦ (44)

which is a good approximation for e.g. Earth observation satellites despite mis-

sion/payload related steering. In this case, ω is equal to the orbital rate and constant.

Hence, in addition to H, also F and therefore the system is time in-variant.

So with

M =

⎡

⎣

M1 0 0
0 M2 0
0 0 M3

⎤

⎦ (45)

it can be written

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

H

HF

HF2

HF3

HF4

HF5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

0 0 −ω 1 0 0 0 0 ω 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
ω 0 0 0 0 1 −ω 0 0 0 0 1

−ω
2 0 0 0 0 −ω ω

2 + M1 0 0 0 0 0
0 0 0 0 0 0 0 M2 0 0 0 0
0 0−ω

2
ω 0 0 0 0 ω

2 + M3 0 0 0

0 0 ω
3 −ω

2 0 0 0 0 −ω
3

M1 0 0
0 0 0 0 0 0 0 0 0 0 M2 0

−ω
3 0 0 0 0−ω

2
ω

3 0 0 0 0 M3

ω
4 0 0 0 0 ω

3 −ω
4 + M

2
1 0 0 0 0 0

0 0 0 0 0 0 0 M
2
2 0 0 0 0

0 0 ω
4 −ω

3 0 0 0 0 −ω
4 + M

2
3 0 0 0

0 0−ω
5

ω
4 0 0 0 0 ω

5
M

2
1 0 0

0 0 0 0 0 0 0 0 0 0 M
2
2 0

ω
5 0 0 0 0 ω

4 −ω
5 0 0 0 0 M

2
3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(46)

This is the upper part of the observability matrix. The parts HFk for k>5 were

left out. Because for the cases considered in sec. 3.2.2 they do not gain additional

information.
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3.2.2 Interpretation of Observability Matrix

The first 3 scalar lines of the observability matrix in Eq. (46) show that abs is always

observable. This result is expected since abs is directly provided as measurement to

the filter (see Eq. (30)). Writing Eq. (46) line by line gives

[HF]1 − c21 = δbx + ωφz + φ̇x

[HF]2 − c22 = δby + φ̇y

[HF]3 − c23 = δbz − ωφx + φ̇z
[

HF2
]

1
− c31 = −ω δbz + (ω2 + M1)φx

[

HF2
]

2
− c32 = + M2φy

[

HF2
]

3
− c33 = ω δbx + (ω2 + M3)φz

[

HF3
]

1
− c41 = −ω2 δbx − ω3φz + M1φ̇x

[

HF3
]

2
− c42 = M2φ̇y

[

HF3
]

3
− c43 = −ω2 δbz + ω3φx + M3φ̇z

[

HF4
]

1
− c51 = ω3 δbz + (−ω4 + M2

1 )φx
[

HF4
]

2
− c52 = M2

2 φy
[

HF4
]

3
− c53 = −ω3 δbx + (−ω4 + M2

3 )φz
[

HF5
]

1
− c61 = ω4 δbx + ω5φz + M2

1 φ̇x
[

HF5
]

2
− c62 = M2

2 φ̇y
[

HF5
]

3
− c63 = ω4 δbz − ω5φx + M2

3 φ̇z

where cij is a known value. It is known since abs is always observable and, hence,

computed from the first matrix line (H-line) in Eq. (46). The cij correspond to the

first matrix column in Eq. (46). Using these equations, now different cases shall be

distinguish to analyze the observability of the estimator states.

Case 1: Time-constant STR/IMU misalignment

The time-constant misalignment leads to M = 0. Cancelling the last vector column

in Eq. (46) results in

• δby is fully observable

• δbx and φz are only in combination observable

• δbz and φx are only in combination observable

• φy is not observable

To determine the time-constant misalignment to extract its influence on the attitude

estimate, calibration maneuvers are necessary. Such maneuvers must ensure the ob-

servability of the misalignment states.

Case 2: Harmonically oscillating STR/IMU misalignment with orbit frequency

This case is close to Earth observation spacecraft with approximately equal sun and

eclipse duration. One can write M = −ω2 I where ω is the orbital rate. Hence,
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• δbx, δby and δbz are fully observable

• φy is fully observable

• φ̇y is fully observable

• φz and φ̇x are only in combination observable

• φx and φ̇z are only in combination observable

The filter can not estimate each individual time-variant misalignment state. How-

ever, in [9] it was shown that the influence of the time-variant misalignment could

almost completely extracted from the attitude estimates. So, if the focus is on precise

attitude estimates and not on precise determination of the time-variant misalignment

states, this seams to be a valid approach.

Case 3: Harmonically oscillating STR/IMU misalignment with doubled orbit

frequency

This case is more of theoretical nature to study the observability of the system states.

One can write M = −4ω2 I. Hence,

• δbx, δby and δbz are fully observable

• φx, φy and φz are fully observable

• φ̇x, φ̇y and φ̇z are fully observable

4 Conclusion

Deterministic time-variant misalignment between star tracker and gyro unit is

mainly caused by temperature variation during orbit (e.g. sun/eclipse phases). It

can significantly degrade the achievable attitude estimation performance when not

considered by state augmentation within the sensor data fusion filter. The system

dynamics equations required for state augmentation were derived. Considering typ-

ical nadir-oriented Earth observation missions, the observability analyses showed

that often the misalignment states can only be observed as linear combination with

other filter states. Nevertheless, the proposed state augmentation can significantly

decrease the influence of misalignment on the attitude estimation performance as

shown in [9, 10].
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Performance Comparison of Maneuver
Detection Algorithms

Sebastian Bayerl, Georg Herbold, and Lorenzo Pettazzi

Abstract. This paper compares several algorithms for target maneuver detection.

The algorithms are based on input estimation coupled with Kalman filter or IMM

filtering. The performance of each method is analyzed computing a Pareto frontier,

which is based on different quality criteria such as root mean square (rms) of state

estimation error and time of maneuver detection. It is shown that computation of

such Pareto frontiers allows to compare the performance of the different detectors

in a systematic way.

1 Introduction

In target tracking applications a maneuver detector can be used to upgrade an exist-

ing model of a tracking filter. For example a filter modeling a constant velocity is

working in a reliable manner, if a target is moving without any maneuver according

to the filter assumptions. But, if the target motion differs to a constant velocity, the

filter is estimating a false target state with a biased estimation error. The failure in

modeling can be caused by any kind of maneuver. Thus a maneuver detection is

used to give a corrected estimation of the target state, if the maneuver is according
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to the maneuver detector model. Additionally a statement can be made whether the

target is moving with a constant motion or performing a maneuver. This paper will

focus on the maneuver detection and state estimation performance comparison for

five maneuvering detection algorithms:

• Open-loop input estimation with χ2-based detector

• Open-loop input estimation with Gaussian significance based detector

• Closed-loop input estimation detector

• IMM detector without interaction

• IMM detector with interaction

The remainder of this paper is organized as follows. In section 2 the problem of

Maneuvering Target Tracking is defined. Section 3 presents several algorithms to

solve this problem. In section 4 these algorithms are compared. Conclusions are

presented in section 5.

2 Problem Formulation

A linear system is used to describe the motion of a target:

x(k + 1) = Φ(k) ·x(k)+ G(k) ·u(k)+ q(k) (1)

y(k) = H(k) ·x(k)+ n(k) (2)

x(k) is the state vector of the target, y(k) is the measurement and u(k) is an unknown

input, which is modeling a maneuver. The process noise q(k) and the measurement

noise n(k) are assumed to be uncorrelated zero mean, white noise with known co-

variance matrices Q(k) and R(k). H(k) is the measurement matrix.

Maneuver detection consists of two different tasks:

• On the one hand the existence of a maneuver has to be detected. Maneuver de-

tection can be formulated as testing between two hypotheses:

– Hypothesis H1: The target is in non-maneuverig mode 1 (u(k) = 0).

– Hypothesis H2: The target is in maneuverig mode 2 (u(k) �= 0).

• On the other hand the estimated state vector x̂ has to be corrected through the

measurement vector y(k). In order to obtain an accurate estimation, the maneuver

u(k) has to be estimated and used to correct the state estimation.

3 Detection Algorithms

The basic building block of the maneuver detection algorithms presented in this

paper is a Kalman filter with a constant velocity model (CV filter). This Kalman

filter is able to compute an estimation x̂ of the true target state x with associated

covariance P̂. The transition matrix Φ in (1) models a constant velocity without any

maneuver.
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x̂(k + 1|k) = Φ(k) · x̂(k|k) (3)

P̂(k + 1|k) = Φ(k) · P̂(k|k) ·Φ(k)T + Q(k) (4)

v(k) = y(k)−H(k) · x̂(k + 1|k) (5)

S (k) = H(k) · P̂(k + 1|k) ·H(k)T + R(k) (6)

K (k) = P̂(k + 1|k) ·H(k)T ·S(k)−1 (7)

x̂(k + 1|k + 1) = x̂(k + 1|k)+ K(k) ·v(k) (8)

P̂(k + 1|k + 1) = [I−K(k) ·H(k)] · P̂(k + 1|k) (9)

The maneuver u can be detected and estimated by using the innovation v and its

covariance matrix S.

A maneuver detection algorithm can be build with two different approaches. The

first way is to handle a maneuver as an unknown input into a system with constant

velocity. Therefore the CV filter is extended with an input estimation algorithm.

The other way to build a maneuver detector is to use an IMM filter system including

two filters with different motion models. One filter is modeling a non-maneuvering

motion, the other one is modeling a maneuvering motion. The structure of the filter

system allows to get information about the maneuvering mode of the target.

3.1 Input Estimation

3.1.1 Preliminaries

In [2] it is shown that the innovation v of a Kalman filter is a linear function of the

unknown input u(k). This can be easily shown by comparing the residuals of two

different filters:

• A false filter with non-maneuvering model:

x(k + 1) = Φ(k) ·x(k)+ q(k) (10)

• A correct, but hypothetic filter with the maneuver as input:

x∗(k + 1) = Φ(k) ·x∗(k)+ G(k) ·u(k)+ q(k) (11)

With use of the residuals of the false filter, the unknown maneuver of the hypothetic

filter can be estimated. The innovations v∗ of the correct, hypothetical filter are zero

mean, white noise with covariance S∗. In comparison with the hypothetic innova-

tions the real innovations v are biased by the maneuver. Hence the real innovations

can be written as a function of v∗, i.e.

v(k) = v∗(k)+Λ(k) ·u(k) (12)

It is then possible to conclude that the real innovations are a linear measurement of

the maneuver. Λ(k) is a measurement matrix defined with Λ(k) = H(k) ·G(k).
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3.1.2 Open-Loop Structure

Maneuver estimation

To estimate the unknown maneuver u and its covariance matrix P̂u a derivation of

the recursive least square method according to [2] is used.

P̂u(k) =
[

P̂∗−1

u (k−1)+Λ T (k) ·S−1(k) ·Λ T (k)
]−1

(13)

û(k) = û(k−1)+ ∆ û(k) (14)

with ∆ û(k) = P̂u(k) ·Λ T (k) ·S−1(k) · [v(k)−Λ(k) · û(k−1)] (15)

This estimation differs to the standard recursive least square method. The estima-

tion of the unknown input u with the standard least square method would lead to

a smaller covariance matrix with each new time step until new measurements have

almost no influence to the estimation. In order to mitigate such problem the old

covariance matrix P̂u(k−1) will be rescaled with a factor γ ∈ [0,1].

P̂∗
u (k−1) =

1

γ
· P̂u(k−1) (16)

Maneuver detection

In order to detect if the target is in maneuvering mode, tests for the statistical sig-

nificance of the maneuver can be introduced, such as the χ2 and the Gauss test.

([6]).

For the χ2 test a variable ε(k) = û(k)T · P̂u(k)
−1 · û(k) is calculated. Under as-

sumption of H1, ε(k) is χ2 distributed. This leads to a simple test.

ε(k) > χ2(n,α) ⇒ H2, target is in maneuvering mode (17)

where (1−α) is the confidence level of the test. This means H1 will be rejected with

confidence (1−α), if ε(k) exceeds the corresponding threshold. n is the degree of

freedom of the estimated maneuver.

Similar to the χ2 test is the Gauss test. According to the Gauss test a maneuver

will be declared, if one single component ûi of the estimated maneuver is statistical

significant. λ is determined from the standard Gaussian distribution.

max

⎛

⎝

|ûi(k)|
√

P̂u i,i(k)

⎞

⎠ > λ ⇒ H2, target is in maneuvering mode (18)

State correction

If the estimated maneuver has been estimated and it is statistical significant, the state

and covariance must be corrected. In the open-loop structure only the output of the

system is being corrected so that the corrected state estimation is not fed back to

the filter. In order to characterize the effect of the maneuver onto the state, a time
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window is being built continuously. The matrix Ψ describes the windowed relation

between the target state and the maneuver. It is calculated as follows:

Ψ(k) = [I−K(k−1) ·H(k−1)]·Φ(k−1) ·Ψ(k)+ G(k) (19)

According to [2] the estimated state and its covariance can be corrected in the fol-

lowing way.

x̂corr(k|k) = x̂(k|k)+ ∆ x̂(k)

= x̂(k|k)+ [I−K(k) ·H(k)] ·Ψ(k) · û(k) (20)

P̂corr(k|k) = P̂(k|k)+ ∆ P̂(k)

= P̂(k|k)+ [I−K(k) ·H(k)] ·Ψ(k) · P̂u(k) ·ΨT (k) · [I −K(k) ·H(k)]T

(21)

CV filter

maneuver estimation

state correction

significance test

+

maneuver detected

x , Px, Py, R

u, P

Δx, ΔP

v, S
corrcorr

u

d
e
te
c
to
r

Fig. 1 Maneuver detection and state correction with open-loop structure

3.1.3 Closed-Loop Structure

In the open-loop structure the detector does not share the information about the esti-

mated maneuver with the filter. The corrected state and covariance is only available

at the output. According to [4] the optimal estimation is possible, if a closed-loop

structure is used, where the feedback of the filter is corrected.

Through this closed-loop structure it is not possible to make a windowed estimate

of the maneuver, because the filter state is being corrected each time step. Instead

CV filter

detector

+

maneuver detected

x , Px, Py, R

Δx, ΔP
v, S

corrcorr

Fig. 2 Maneuver detection and state correction with closed-loop structure
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of a time window each single measurement has to be used separately to estimate the

maneuver.

Maneuver estimation

At the beginning of this section it is shown, that the residuals are a linear measure-

ment of the maneuver. Thus the maneuver and its covariance can be estimated via

least square methods according to [3].

û(k) =
[

Λ T (k) ·S−1(k) ·Λ(k)
]−1 ·Λ(k)T ·S(k)−1 ·v(k) (22)

P̂u(k) =
[

Λ T (k) ·S−1(k) ·Λ(k)
]−1

(23)

The estimation of the maneuver, out of the innovation without windowing, means to

loose information about the composition of the innovations e.g. it is not possible to

extract the acceleration from the innovation noise. This results in an estimation of

a maneuver caused by noise. In order to reduce this effect several algorithms were

tested. The best results were reached by filtering the estimations with an filtering

factor α ∈ [0,1].

û(k) = (1−α) · û(k−1)+ α · û(k) (24)

P̂u(k) = (1−α)2 · P̂u(k−1)+ α2 · P̂u(k) (25)

Maneuver detection

The maneuver is detected by an absolute test. This means one single component ûi

of the estimated acceleration has to exceed a threshold. This threshold is defined in

adaptive fashion through the process noise of the Kalman filter. ∆v f ilter is the veloc-

ity noise of the process noise Q and dt is the elapsed time since the last detection.

ûi > uthreshold → H2, target is in maneuvering mode (26)

with uthreshold =
∆v f ilter

dt

State correction

If the maneuver is detected, the filtered state and state covariance can be corrected.

The correcting term is calculated similar to the open-loop structure.

x̂corr(k|k) = x̂(k|k)+ ∆ x̂(k) (27)

P̂corr(k|k) = P̂(k|k)+ ∆ P̂(k) (28)

with ∆ x̂(k) = [I−K(k) ·H(k)] ·G(k) · û(k) (29)

∆ P̂(k) = [I−K(k) ·H(k)] ·G(k) · P̂u(k) ·GT (k) · [I−K(k) ·H(k)]T (30)
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3.2 IMM Filtering

The algorithms presented in section 3.1.2 and 3.1.3 are both based on a combination

of a filter which is modeling a constant velocity, and a detector. In [1] an algorithm is

described which is using several tracking filters with different motion models. Hence

the name interactive multiple model filtering (IMM filtering). The IMM algorithms

used in this paper is using two different filter:

• One filter with a model describing a non-maneuvering motion

• One filter with a model describing a maneuvering motion

The maneuvering filter model can describe several maneuvers. For the comparison

in this paper, a maneuver with constant acceleration is modeled. There is a fixed

initial switching probability PTi, j
, which describes the probability that the target state

will switch from mode i to mode j in the next time step. Furthermore there are other

conditional probabilities which are being updated by the innovations of the filters:

• The switching probability µi, j(k) describes the probability that the target has

changed from mode i at time step (k-1) into mode j at the actual time step (k).

• The fixed switching probability PTi, j
describes the probability that the target will

change from mode i at the actual time step (k) and to the mode j in the next time

step (k+1).

• The state probability µi(k) describes the probability that the target is in mode i at

time (k).

• The predicted state probability Ci(k) describes the probability that the target will

be in mode i at time (k+1).

3.2.1 Probability Update

As in the χ2 test, statistical deviations χ2
i of each filter are calculated to update the

probabilities of each filter i:

χ2
i (k) = vi

T (k) ·S−1
i (k) ·vi(k) (31)

The probability density can be then obtained with Λi(k) =
exp(−0.5·χ2

i (k))√
(2π)N ·|Si(k)|

.

Where N is the degree of freedom of the innovations. Finally the probabilities

can be updated as follows:

µi(k) =
Λi(k) ·Ci(k)

C(k)
and µi, j(k) =

PTi, j
·µi(k)

C j(k)
(32)

with C(k) =
2

∑
j=1

Λ j(k) ·C j(k) and C j(k) =
2

∑
i=1

PTi, j
·µi(k−1) (33)
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3.2.2 IMM Interaction

It is possible to mix the states and covariances in the feedback of all filters. This

interaction leads to an exchange of information between the filters.

x̂ j−mix(k−1|k−1) =
2

∑
i=1

µi j(k−1) · x̂i(k−1|k−1) (34)

P̂j−mix(k−1|k−1) =
2

∑
i=1

µi j(k−1) · [P̂i(k−1|k−1)+ D̂Pi j(k−1)] (35)

with D̂Pi j(k−1) = Dxi j(k−1) ·DxT
i j(k−1) (36)

Dxi j(k−1) = x̂i(k−1|k−1)− x̂ j−mix(k−1|k−1) (37)

3.2.3 Maneuver Detection

The state probabilities µi of each filter i contain information about the target maneu-

vering mode. If the state probability of the maneuvering filter exceeds the probabil-

ity of the non-maneuvering filter, then the hypothesis H2 is correct. This leads to a

simple test:

µmaneuvering f ilter > 50% ⇒ H2, target is in maneuvering mode (38)

3.2.4 Combination of the System Output States and Covariances

Instead of correcting the state and covariance of the non-maneuvering filter, the

filtered data will be combined. Thus, a weighted sum of the states and covariances

is being built. Furthermore, it is not necessary to estimate the maneuver because

it is already estimated in the maneuvering filter. These combined values are not

significant for the IMM algorithm itself, but they are used for a possible user at the

system output.

x̂(k|k) =
2

∑
i=1

µi(k) · x̂i(k|k) (39)

P̂(k|k) =
2

∑
i=1

µi(k) ·
{

P̂i(k|k)+ [x̂i(k|k)− x̂(k|k)] · [x̂i(k|k)− x̂(k|k)]T
}

(40)

4 Comparison of the Algorithms

4.1 Criteria of Quality

Three criteria of quality are defined to compare the different algorithms.
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• The first criterion is the delay time. It is defined as the arithmetic mean of the

time the detector needs to detect the maneuver onset and the time the detector

needs to detect the maneuver termination.

• The second criterion is the number of false detections. A false detection is a false

statement of the detector about the maneuver. For example, a detector detects no

maneuver during the period the target is maneuvering.

• The last criterion is the estimation error which is a measurement of the noise

affecting the maneuver estimation and state correction. In order to obtain the

estimation error a time difference between the true maneuver and the mean es-

timation of several Monte Carlo simulations is calculated via cross-correlation.

This time difference is used to shift the maneuver estimation of one single Monte

Carlo simulation towards the true maneuver. The estimation error is the differ-

ence between the shifted estimation and the truth. The root mean square of this

difference over time is built to get the estimation error. Important is that areas of

∆ t around the maneuver start and end will not be considered. These manipula-

tions are needed in order to avoid the influence of the estimation delay into the

calculation of the estimation error. Finally, this time averaged error is addition-

ally averaged over all Monte Carlo simulations.

rms of estimation error

Fig. 3 Calcluation of the error in maneuver estimation

4.2 Pareto Frontier

Comparing two or more algorithms is difficult because the algorithms differ in more

than one criterion of quality. Thus, a Pareto frontier according to [5] is used to com-

pare the detection algorithms in a plane with estimation error and the detection delay

as axis. The Pareto frontier is the connection line between all dominant points of one

algorithm. The attribute dominant is declared, if there is no other point which has

a lower detection delay and a smaller estimation error. This means that one point

on the Pareto frontier describes the best estimation error at a fixed delay time and

vice versa for a special scenario. To get one point in the plane a simulation with

fixed input parameters [p1, . . . , pn] will be calculated. These input parameters have



394 S. Bayerl, G. Herbold, and L. Pettazzi

influence on the behavior of the detection algorithms. After the simulation is done,

all criteria of quality are calculated and used to localize a point in the Pareto plane.

This point is representing the behavior of the algorithm with the input parameters

[p1, . . . , pn]. To approximate the Pareto frontier each input parameter pi will be sam-

pled with [pmin
i , . . . , pmax

i ]. In this paper the input parameters for the input estimation

based detectors are the process noise QCV and the filtering factors α / γ . For approx-

imating the Pareto frontier of the IMM algorithm the two process noise matrices Qi

of each filter i and the initial switching probability PT are varied.

4.3 Comparison of the Pareto Frontiers

A scenario has to be defined to compare the algorithms. In the simulated scenario a

target is moving with constant velocity v until a maneuver with constant turn begins.

The acceleration of the target during the maneuver is defined with a(k) = ω ×v(k).
The simulated trajectory has duration of 100 seconds. The maneuver starts at 25

seconds and ends at 75 seconds. The radar measures in radius r, azimuth φ and

elevation θ . Radar noise is added correspondingly. The following parameters are

used to simulate the trajectory:

• radar position p0 =
[

0m 0m 0m
]T

• error of measurement σr = 20m, σφ = 3.4mrad, σθ = 1.7mrad

• initial target position p0 =
[

−10000m 0m 1000m
]T

• initial target velocity v0 =
[

250 m
s 0 m

s 0 m
s

]T

• turn rate ω =
[

0 1
s 0 1

s 0.1 1
s

]T

Figure 4 shows the Pareto frontier of this constant turn motion with a maximum part

of 25 % false detections.

• Maneuver detection by IMM-filtering has best performance. It has the best de-

tection delay at a fixed maneuver estimation error. The interaction of the filters

does not significantly improve the performance of the detector.

• Maneuver detection with input estimation has a inferior quality to the IMM de-

tection. With open-loop structure the χ2 and Gauss test have almost the same

results.

• The maneuver detection with closed-loop structure shows nearly the same perfor-

mance as the open-loop structure. The advantage of the information interchange

between filter and detector is nullified by the fact that the estimation has to be

filtered strongly in order to avoid a feed through of the measurement noise to the

maneuver estimation. The closed-loop estimation does not achieve a low noise

estimation, because the strong filtering, which is needed, would cause an enor-

mous detection delay.
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Fig. 4 Pareto frontier for a constant turn motion

4.4 Comparison of the Computing Time

In this section the maneuver detection algorithms are analyzed with respect to the

computing time. This is also a critical quality criterion for real applications. The

computing time is calculated as follows. With each maneuver detection step the

calculation time is measured and saved. After the simulation all these values are

taken and averaged in time. This average is additionally averaged above several

Monte Carlo runs. The given data in figure 5 are scaled to the longest computing

time in order to avoid absolute values.

• The IMM algorithms need the most calculating time. The reason lies in the two

parallel running Kalman filters and the complexity of the algorithm structure.

The IMM algorithm without interaction can be processed faster than the IMM

algorithm with interaction.

• The calculation time of open-loop input estimation with χ2 test is a bit lower

than those of the version with Gauss test.

• The closed-loop input estimation has the lowest computing time.

100%

92%

46%

45%

43%

IMM detection with interaction 

IMM detection without interaction 

Open-loop input estimation with Gauss test

Open-loop input estimation with Chi-Square test

Closed-loop input estimation

Fig. 5 Relative computing time of the maneuver detection algorithms
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5 Conclusion

Several maneuver detectors are developed to detect a maneuver and to estimate the

target state. With the use of one Kalman filter with non-maneuvering motion model

the state can be estimated and corrected via least square methods. A state estimation

and maneuver detection is also possible by using two Kalman filters with different

motion models in an IMM algorithm. Also a special scenario was defined, in which

the maneuver detectors are compared. Note that the performance of the maneuver

detectors has been assessed against a maneuvering scenario that does not match

with the one assumed in the input estimation and the IMM algorithm. It is shown,

that different maneuver detection algorithms with several criteria of quality can be

compared with the use of a Pareto frontier in a systematic way. The results of this

comparison show, that IMM filtering has on the one hand best maneuver detection

and the best estimation behavior but on the other hand the highest computing time.
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Spacecraft Attitude Estimation and Gyro
Calibration via Stochastic H∞ Filtering

Daniel Choukroun, Lotan Cooper, and Nadav Berman

Abstract. A filter for estimating spacecraft attitude quaternion and gyro drift from

vector measurements in the presence of white noises in the gyro error, in the drift

dynamics, and in the line-of-sight measurement error is developed. The variance pa-

rameters of the white noises are unknown, and are modeled as non-anticipative sec-

ond order stochastic processes. The approach taken in this work consists in estimat-

ing the attitude quaternion and the gyro drift while attenuating the transmission from

the unknown variances to the estimation error. The resulting H∞ filter involves the

solution of a set of (differential) linear matrix inequalities. In the case of gyro white

noises, extensive Monte-Carlo simulations were run showing that the proposed filter

performs well from the standpoint of attitude estimation per se, in a wide range of

gyro noise and line-of-sight noise intensities. The guaranteed disturbance attenua-

tion level seems to be slightly dependent on the noises intensities. The actual level of

disturbance attenuation is improving when the noises levels increase and admits as

worst scenario the case of(ideal) noise-free sensors, as expected from the analysis.

When compared with a matched quaternion Kalman filter, the H∞ filter produces

higher Monte-Carlo standard deviations of the estimation error, but lower Monte-

Carlo means. The higher the level of noises are, the less obvious the advantage of the

Kalman filter is. When estimating the quaternion only, and as opposed to standard

quaternion Kalman filters, the H∞ filter’s gains can be computed independently

from the quaternion estimates, which makes it insensitive to estimation errors.
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This favorable feature is further emphasized when comparing its performances with

those of unmatched Kalman filters. When provided with too high or too low noise

covariances, the Kalman filter is outperformed by the H∞ filter, which delivers es-

sentially identical levels of errors within a wide range of noise intensities.

1 Introduction

The attitude quaternion [1], q, is a very popular spacecraft attitude parametrization

and the mathematical modeling and filtering have been ongoing topics of research

for more than four decades [2]. Classical techniques for quaternion stochastic esti-

mation belong to the realm of Kalman filtering, i.e., optimal filtering, and numer-

ous successful quaternion estimators have been developed along that approach (e.g.

[3], [4]). An inherent drawback to the optimal filtering approach consists of being

sensitive to the model parameters’ inaccuracies, in particular, the estimator’s per-

formances rely on the adequate knowledge of the measurement and process noises

variances. Although adaptive noise estimation might provide satisfactory perfor-

mances for some cases [5], the designer may be willing to tackle the parameters

uncertainty pitfall by a less sensitive approach: rather than trying to estimate the

uncertainty, the filter will attenuate their effect on the estimation error down to an

arbitrary transmission level. In that case, the system satisfies the L2-gain property

between the perturbation and the estimation error. That approach was applied in [6],

where an H∞ spacecraft quaternion and gyro bias estimator was developed. The

point of view of that work was deterministic, in the sense that the measurement and

process noises were modeled as deterministic functions.

In this work, building on a previous work [7], a stochastic H∞ quaternion fil-

tering problem is proposed. We consider the case where a single continuous-time

noisy vector measurement is being acquired and a triad of body-mounted gyros are

providing a measurement of the spacecraft angular velocity with drift errors and

white noise. We assume that the drift behaves like a non-zero mean random walk

and that the variances of the line-of-sight measurements, of the gyro errors, and of

the drift dynamics are unknown. The proposed filter is designed such as to estimate

the quaternion and the gyro drift while attenuating these unknown perturbations.

Motivated by recent works on stochastic H∞ filtering and control for nonlinear sys-

tems [9], [10], we follow an approach based on the dissipativity theory.

As a first step, an H∞ filter is developed where the variance of the gyro noises

only is modeled as a perturbation. The measurement noise level is known and the

drifts are assumed to be zero. The filtering problem solution hinges on solving a

(differential) linear matrix inequality (DLMI) in order to compute the filter’s time-

varying gain. The DLMI provides a sufficient condition for the sought L2-gain prop-

erty. The development avoids linearization, and the structure of the quaternion state-

space equations is exploited such that the resulted DLMI does not depend on the

estimated process. As a consequence, computations can be performed off-line for a

priori known histories of the line-of-sight measurements and of the angular velocity.

Further, another H∞ filter is developed along the same approach, but assuming that
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both the gyro white noise variance and the attitude sensing noise variance are un-

known and modeled as disturbances. The resulting estimator shows similar features

to the first one. Extensive Monte-Crlo simulation were run in order to check the

H∞ filter’s performances, as a quaternioin estimator, and to compare the perfor-

mances of this type of estimator with another type of quaternion Kalman filter. The

Kalman filter is a variant of the classical Multiplicative EKF for quaternion estima-

tion [3]. The case of quaternion and gyro drift H∞ estimation was also addressed

analytically.

Section 2 presents the mathematical formulation of the problem. Section 3 in-

cludes the development of the quaternion H∞ estimators. Section 4 provides the

basis for the development of a quaternion-drift H∞ estimator. Section 5 presents

the results of the Monte-Carlo simulations. Conclusions are proposed in the last

section.

2 Statement of the Problem

Consider the following stochastic dynamical system in Itô form:

dq
t
=

1

2
Ω(ω

t
− c

t
)q

t
dt−

1

2
Ξ(q

t
)σ

ǫ
(t)dβt; q(0)

a.e.
= q0; t∈ [0, T ] (1)

dc
t

= σ
c
(t)dν

t
; c(0)

a.e.
= c0 (2)

dy
t

= H t qt
d t −

1

2
Ξ(q

t
)σ

b
(t)dηt (3)

where q
t

denotes the attitude quaternion, Ω t is the following matrix function of the

measured angular velocity ωt,

Ω t =

[

− [ ω×] ω

−ωT 0

]

(4)

where ω
t
, which is acquired by a triad of body-mounted gyroscopes, is corrupted

by an additive drift, c
t
, and by an additive standard Brownian motion, βt, with

infinitesimal independent increments dβt such that E {dβtdβ
T
t } = I

3
d t . σ

ǫ
(t ) de-

notes the variance parameter of the gyro output noise β
t
. The gyro drift is modeled

as a random walk process with mean c0 and variance parameter σ
c
(t ). In Eq. (2),

ν
t

denotes a standard Brownian motion that is independent from β
t
. The system of

equations (1), (2) is a straightforward extension of the quaternion stochastic differ-

ential equation (SDE) developed in [8] to the case of drifts in the gyro output error.

Equation (3) is the continuous-time equivalent of the quaternion measurement equa-

tion in [5], where the measurement value is identically zero. Hence,

dy
t

= 0 (5)

and the measurement matrix H t is constructed from vector measurements. Let bt

and rt denote the projections of a measured line-of-sight (LOS) in the spacecraft
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body frame axes and in a reference frame, respectively, then Ht is computed as

follows

s =
1

2
(b + r) (6)

d =
1

2
(b− r) (7)

H =

[

− [s×] d
−dT 0

]

(8)

The matrix, Ξ , which appears both in the process and measurement multiplicative

noises, is the following linear matrix function of the quaternion q = [ eT q]T :

Ξ(q) =

[

q I
3
− [ e×]
eT

]

(9)

The measurement noise is modeled as a standard Brownian motion, η
t
, with vari-

ance parameter σ
b
(t).

The filtering problem consists in estimating the quaternion, q
t
, and the gyro drift,

c
t
, from the LOS measurements in the presence of unknown intensities in the sys-

tem noises, σ
ǫ
(t), σ

b
(t), and σ

c
(t). The filtering problem is formulated as a stochastic

disturbance attenuation problem via the H∞ approach in the following way. Assum-

ing that σ
ǫ
(t), σ

b
(t), and σ

c
(t) are stochastic non-anticipative processes with finite

second-order moments, we consider the following estimator:

d̂q
t

=
1

2
Ω(ω

t
− ĉ

t
)q̂

t
dt+ Kq(q̂t

, ĉ
t
) (dy

t
− q̂

t
dt) (10)

d̂c
t

= Kc(q̂t
, ĉ

t
) (dy

t
− q̂

t
dt) (11)

q̂(0) = q̂0, ĉ(0) = ĉ0 (12)

Let q̃
t

and c̃
t

denote the additive quaternion and biases estimation error, i.e.,

q̃
t
= q

t
− q̂

t
(13)

c̃
t
= c

t
− ĉ

t
(14)

Given a scalar γ > 0, we seek for a gain process K(q̂
t
) such that the following H∞

criterion is satisfied:

E{

∫ T

0

(‖q̃
t
‖2 + ‖c̃

t
‖2) dt} ≤ γ2E{‖q̃0‖2 + ‖c̃0‖2 +

∫ T

0

‖v
t
‖2 dt} (15)

under the constraints (1)-(3), and where v
t

denotes the augmented process of ad-

missible disturbance functions, i.e., vt = {σ
ǫ
(t), σ

b
(t), σ

c
(t)}. Whenever Eq. (15)

is true, it is said that the L
2
-gain property is satisfied from {q̃0,vt} to q̃

t
, for

0 ≤ t ≤ T .
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3 Quaternion H∞ Estimation

3.1 Attenuation of Process Noise with Unknown Intensity σ
ǫ

As in [7], we will first consider the simpler case where there are no biases and the

intensity parameter σ
b

is known.

Augmented stochastic process

Following standard techniques [9] , we define an augmented process as follows:

qa
t
=

[

q̂
t

q̃
t

]
(16)

It is straightforward to develop the following SDE for the augmented process qa
t

:

[
d̂q

t

d̃q
t

]
=

[
( 1

2 Ωt − K̂
t
Ht)q̂t

( 1
2 Ωt − K̂

t
Ht)q̃t

]
dt +

3∑

i= 1

[
04×1

− 1
2 ΞCi

]
σ
ǫ
(t)dβ

i
+

[
O4×3
1
2 K̂

t
Ξ

]
dηt

(17)

where ΞCi, i = 1, 2, 3, denote the columns of the matrix Ξ , and the scalar processes

β
i
, i = 1, 2, 3, are the components of the vector Brownian motion β

t
. Notice that

Ξ is a function of the augmented process { q̂
t
, q̃

t
} since it is a function of the

quaternion q. Equation (17) can be re-written in the following compact form:

dqa
t

= F aqa
t
dt +

3∑

i= 1

gi
2(q

a
t
)σ

ǫ
(t)dβ

i
+ G(qa

t
)dηt (18)

where F a , gi
2(q

a
t
) and G(qa

t
) are effectively defined from Eq. (17).

Hamilton-Jacobi-Bellman inequality

Following [9], the desired L2-gain property will be satisfied if and only if the aug-

mented system (18) is dissipative with respect to the supply rate S(σ
ǫ
(t),qa

t
) =

γ2[σ
ǫ
(t)]2 − ‖q̃

t
‖2, for a given positive scalar γ. We, thus, seek for a non-negative

scalar-valued function, V (qa, t), that satisfies the fundamental property [10]:

E{V (qa
t, t)} ≤ E{V (qa

s, s) +

∫ t

s

(γ2‖σ
ǫ
(τ)‖2 − ‖q̃τ‖2)dτ} ∀ 0 ≤ s ≤ t ≤ T

(19)

V (qa
0, 0) ≤ γ2‖q̃0‖2 (20)
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for all qa and for all admissible σ
ǫ
(t). When Eq. (19) is satisfied, the function V is

called a storage function with respect to the supply rate S. A sufficient condition for

Eq. (19) is:

E{dV (qa, t)} ≤ E{γ2‖σ
ǫ
(t)‖2 − ‖q̃

t
‖2} ∀ 0 ≤ t ≤ T (21)

for all qa and for all admissible σ
ǫ
(t), where dV is the Itô differential of the function

V . Using Itô differentiation rule [11] and dropping the expectation operator on both

sides of Eq. (21) yields the following sufficient condition [Hamilton-Jacobi-Bellman

(HJB) equation] for V (qa, t):

∂V

∂t
+

∂V

∂qaT
F aqa +

1

2
σ2
b

tr

{
GGT ∂2V

∂qa∂qaT

}
(22)

+
1

2
σ2
ǫ

(t)

3∑

i=1

gi
2

T ∂2V

∂qa∂qaT
gi

2 ≤ γ2[σ
ǫ
(t)]2 − ‖q̃

t
‖2

for all 0 ≤ t ≤ T , qa, and for all admissible σ
ǫ
(t), where G = G(qa). Bringing all

terms to the left-hand-side (LHS) of Eq. (22) yields

∂V

∂t
+

∂V

∂qaT
F aqa +

1

2
σ2
b

tr

{
GGT ∂2V

∂qa∂qaT

}
(23)

+ qaT Lqa +

[
1

2

3∑

i=1

gi
2
T ∂2V

∂qa∂qaT
gi

2 − γ2

]
σ2
ǫ

(t) ≤ 0

and where

L =

[
O4 O4

O4 I4

]
(24)

For a solution to exist for all qa and for all admissible σ
ǫ
(t), the coefficient multi-

plying the arbitrary disturbance function, σ
ǫ
(t), in Eq. (23) must be negative, which

yields the following condition:

1

2

3∑

i=1

gi
2

T ∂2V

∂qa∂qaT
gi

2 − γ2 ≤ 0 (25)

for all (qa, t). Given Eq. (25), any non-zero disturbance will only add a negative

term to the LHS, increasing the system’s dissipativity with respect to the chosen

supply rate. The worst-case scenario will, thus, consists in a vanishing disturbance,

σ∗

ǫ
(t), e.g.,

σ∗

ǫ
(t) = 0 (26)

Inserting Eq. (26) into Eq. (23) yields the following sufficient condition:
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∂V

∂t
+

∂V

∂qaT
Fqa +

1

2
σ2
b

tr

{
GGT ∂2V

∂qa∂qaT

}
+ qaT Lqa ≤ 0 (27)

for all 0 ≤ t ≤ T and qa.

Candidate storage function V

A standard approach in order to circumvent the formidable task of solving the par-

tial differential inequality for V [Eq. (27)] consists in guessing the solution in a

parameterized form and developing sufficient conditions for its parameters. We use

here the classical quadratic form for V , i.e., we assume

V (qa, t) = qaT P
t
qa (28)

with the further assumption that P
t

is symmetric, positive, and block diagonal, i.e.,

P
t
=

[
P̂

t
O4

O4 P̃
t

]
(29)

Convexity condition with respect to σ
ǫ
(t)

The existence of a solution for the filtering problem is conditioned upon Eq. (25),

which is re-written here:

1

2

3∑

i=1

gi
2
T ∂2V

∂qa∂qaT
gi

2 − γ2 ≤ 0 (30)

Using Eqs. (28),(29), and the following known property of the matrix Ξ

ΞΞT = qT
t
q

t
I4 − q

t
qT

t
(31)

without simplification via the quaternion unit-norm constraint, yields

qT
t

[
1

4
( trP̃

t
I
4
− P̃

t
) − γ2 I

4

]
q

t
≤ 0 (32)

Since Eq. (32) must be satisfied for all q
t
, we deduce the following condition on γ:

1

4
( trP̃

t
I
4
− P̃

t
) − γ2I4 ≤ 0 (33)

Sufficient condition on the matrices K and P

Using Eqs. (28),(29) in Eq. (27), straightforward computations yield the following

identity:
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∂V

∂t
+

∂V

∂qaT
F aqa =

[
q̂T

t
q̃T

t

]
[

dP̂
t

dt
+ F̂T

t
P̂

t
+ P̂

t
F̂

t
O4

O4
dP̃

t

dt
+ F̂T

t
P̃

t
+ P̃

t
F̂

t

] [
q̂

t

q̃
t

]

(34)

where F̂
t

is defined as follows:

F̂
t

=
1

2
Ωt − K̂

t
Ht (35)

Relying on Eq. (31), and using the expression for G, as given in Eq. (17), further

algebraic manipulations yield the following identity:

1

2
σ2
b

tr

{
GGT ∂2V

∂qa∂qaT

}
=qT

t

{
σ2
b

4

[
tr(K̂T

t
P̃

t
K̂

t
)I4 − K̂T

t
P̃

t
K̂

t

]}
q

t

=
[
q̂T

t
q̃T

t

] [
I4

I4

] {
σ2
b

4

[
tr(K̂T

t
P̃

t
K̂

t
)I4 − K̂T

t
P̃

t
K̂

t

]}

[
I4 I4

] [
q̂

t

q̃
t

]
(36)

Using Eqs. (34) and (36), we are able to express the LHS of Eq. (27) as a quadratic

form in qa
t
, and thus to re-write Eq. (27) as follows:

[
q̂T

t
q̃T

t

]
⎡

⎣
dP̂

t

dt
+ F̂

T

t
P̂

t
+ P̂

t
F̂

t
+

σ
2

b

4

[
trM̂

t
I4 − M̂

t

]
σ

2

b

4

[
trM̂

t
I4 − M̂

t

]

σ
2

b

4

[
trM̂

t
I4 − M̂

t

]
dP̃

t

dt
+ F̂

T

t
P̃

t
+ P̃

t
F̂

t
+

σ
2

b

4

[
trM̂

t
I4 − M̂

t

]
+ I4

⎤

⎦
[
q̂

t

q̃
t

]
≤ 0

(37)

for all (q̂
t
, q̃

t
, t), where M̂

t
= K̂T

t
P̃

t
K̂

t
. Inequality (37) yields the following dif-

ferential matrix inequality

[
dP̂t
dt

+ F T P̂
t

+ P̂
t
F +

σ2

b
4

[
( trM)I4 − M

] σ2

b
4

[
( trM)I4 − M

]

σ2

b
4

[
( trM)I4 − M

]
dP̃t

dt
+ F T P̃

t
+ P̃

t
F +

σ2

b
4

[
( trM)I4 − M

]
+ I4

]
≤ 0

(38)

for all 0 ≤ t ≤ T , where

F =
1

2
Ωt − KtHt (39)

M = KT
t P̃

t
Kt (40)

and we dropped the symbols ·̂ in order to emphasize that the gain matrix, Kt, will

not be a function of the estimate.
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3.2 Attenuation of Process Noises with Unknown Intensity σ
ǫ

and

of Measurement Noises with Unknown Intensity σ
b

In the present case, the intensities of both the gyro white noise, σ
ǫ
, and of the attitude

sensor’s noise, σ
b
, are assumed unknown and considered perturbations in the H∞

estimation problem. The filtering problem is formulated, as previously, as a stochas-

tic disturbance attenuation problem via the H∞ approach, where the intensities are

modeled as random non-anticipative processes with finite second-order moments on

[0, T ]. For the sake of brevity, and thanks to the similarity between the current case

and the previous one, the filter development details will be omitted. We consider the

following estimator:

d̂q
t

=

[
1

2
Ωt − K̂

t
Ht

]
q̂

t
dt (41)

q̂
t
(0) = q̂0

where K̂
t

denotes K(q̂
t
). Let q̃

t
denotes the additive estimation error, i.e., q̃

t
=

q
t
−q̂

t
. Given a positive scalar, γ > 0, we seek for a gain process, {K̂

t
, 0 ≤ t ≤ T },

such that the following H∞ criterion is satisfied:

E{

∫ T

0

‖q̃
t
‖2 dt} ≤ γ2E{‖q̃0‖2 +

∫ T

0

‖vt‖2 dt} (42)

where vt denotes the augmented process of admissible disturbance functions, i.e.,

vt = {σ
ǫ
(t), σ

b
(t)}. Whenever Eq. (42) is true, it is said that the L2-gain property

is satisfied from {q̃0, σǫ(t), σ
b
(t)} to q̃

t
, 0 ≤ t ≤ T . Simply stated, the proposed

estimator is designed such as to provide an attitude estimate, with a given level of

attenuation from the initial error and the process and measurement noise levels to

the estimation error. An attractive feature is that no a priori knowledge of the noise

intensities is necessary and the attenuation performance is, thus, guaranteed for a

very wide class of noise levels, which may be random and time-varying, provided

that they have a second-order moment.

Sufficient conditions on the matrices K , P̃ , P̂

The sought sufficient conditions on K , P̂
t
, and P̃

t
are as follows:

dP̂
t

dt
+ FT

t P̂
t
+ P̂

t
Ft ≤ 0 (43)

dP̃
t

dt
+ FT

t P̃
t
+ P̃

t
Ft + I

4
≤ 0 (44)

1

4
( trP̃

t
I
4
− P̃

t
) − γ2 I

4
≤ 0 (45)

1

4
( trMt I

4
− Mt) − γ2 I

4
≤ 0 (46)



406 D. Choukroun, L. Cooper, and N. Berman

where

Ft =
1

2
Ωt − KtHt (47)

Mt = KT
t P̃

t
Kt (48)

For simplification purposes, it is assumed that the matrices P̂
t

and P̃
t

are identical,

i.e., we seek for a single positive definite matrix, P̃
t
, that satisfies Eqs. (43) to (46).

Extensive simulations showed that this assumption did not significantly impair the

estimator’s performances. Moreover, this allows dropping Eq. (43), which is auto-

matically satisfied if Eq. (44) is satisfied. The simplified sufficient conditions under

the assumption of a single decision matrix variable P̃
t

are

dP̃
t

dt
+ FT

t P̃
t
+ P̃

t
Ft + I

4
≤ 0 (49)

1

4
( trP̃

t
I
4
− P̃

t
) − γ2 I

4
≤ 0 (50)

1

4
( trMt I

4
− Mt) − γ2 I

4
≤ 0 (51)

where

Ft =
1

2
Ωt − KtHt (52)

Mt = KT
t P̃

t
Kt (53)

Since the LHS of the above inequalities is independent from the quaternion estimate,

the sought filter gain, Kt, will be independent from q̂
t
.

Sufficient condition in form of Linear Matrix Inequalities (LMI)

Since the above inequalities are not linear with respect to P̃ and K , some manipu-

lations are required in order to bring them to an LMI structure. The bilinear depen-

dence with respect to P̃ and K is readily coped with via a standard parametrization

approach. Let Ỹ
t

denote the following four-dimensional matrix:

Ỹ
t
= P̃

t
Kt (54)

then, using Eq. (54) in Eq. (49) yields

dP̃
t

dt
+

1

2
(ΩT

t P̃
t
+ P̃

t
Ωt) − (HT

t Ỹ T
t

+ Ỹ
t
Ht) + I

4
≤ 0 (55)

In order to circumvent the difficulty arising from the quadratic structure of Mt with

respect to P̃
t

and K , we seek for a symmetric positive definite matrix Wt, such that

Mt − Wt = Ỹ T
t

P̃−1
t

Ỹ
t
− Wt ≤ 0 (56)
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Notice that P̃−1
t

exists since P̃
t

is assumed to be positive definite. Then, we use the

following bounds on the LHS of Eq. (51):

1

4
( trMt I

4
− Mt) − γ2 I

4
≤ (

1

4
trMt − γ2) I

4
≤ (

1

4
trWt − γ2) I

4
≤ 0 (57)

and replace Eq. (49) by the following sufficient condition on W :

1

4
trWt − γ2 ≤ 0 (58)

where W , Ỹ , and P̃ satisfies Eq. (56), which by the Schur complement can be

written as the following LMI :

[
−Wt −Ỹ

t

−Ỹ T
t

−P̃
t

]
≤ 0 (59)

Notice that the successive bounds in Eq. (57) may yield higher feasible values for

γ, i.e., a worse level of guaranteed disturbance attenuation.

Summary of the continuous-time H∞ filter

Given q̂0, choose P̃ (0) such that Eq. (20) is satisfied. Solve for P̃
t
= P̃T

t
> 0 ∈ R

4,

Ỹ
t
∈ R

4, and Wt = WT
t > 0 ∈ R

4, the following set of (differential) LMIs:

dP̃
t

dt
+

1

2
(ΩT

t P̃
t
+ P̃

t
Ωt) − (HT

t Ỹ T
t

+ Ỹ
t
Ht) + I

4
≤ 0 (60)

[
−Wt −Ỹ

t

−Ỹ T
t

−P̃
t

]
≤ 0 (61)

1

4
( trP̃

t
I
4
− P̃

t
) − γ2 I

4
≤ 0 (62)

1

4
trWt − γ2 ≤ 0 (63)

For any pair of matrices (Ỹ
t
, P̃

t
), compute the gain Kt using

Kt = P̃−1
t

Ỹ
t

(64)

and compute the estimated quaternion via the estimator differential equation

˙̂q
t

=

[
1

2
Ωt − KtHt

]
q̂

t
(65)
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Remark 1: The estimator equation, (65), is not designed to preserve the quaternion

unit-norm property. For that purpose, a normalization stage of the estimate is per-

formed along the estimation process, i.e., q̂
t
(0) is continuously divided by its norm.

Remark 2: Inspired by previous works [12], the discrete approximation of the dif-

ferential LMI (60), is developed via a finite-difference formula, which is here:

P̃k+ 1−P̃k

∆t
+

1

2
(ΩT

k+ 1P̃k+ 1+P̃k+ 1Ωk+ 1) − (HT
k+ 1Ỹ

T
k+ 1 + Ỹk+ 1Hk+ 1) + I

4
≤ 0

(66)

where ∆t denotes the time increment, and k = 0, 1, ..., N = T/ ∆t.

4 Quaternion and Gyro Drift H∞ Estimation

In this section, the problem of estimating the attitude quaternion and the gyro drift

under the assumption of unknown intensities in the system’s noises is addressed.

The quaternion-drift system is governed by the following SDE:

[
dq

t

dc
t

]
=

[
1
2 Ω(ω

t
− c

t
)q

t

O3×1

]
dt +

[
− 1

2 Ξ(q
t
) O4×3

O3 I
3

] [
σ
ǫ
(t) I

3
O

3

O
3

σ
c
(t) I

3

] [
dβt

dν
t

]

(67)

where β
t
, ν

t
are vector standard Brownian motion with unknown variance pa-

rameters σ
ǫ

and σ
c

respectively. The filtering problem is formulated as a stochastic

disturbance attenuation problem via the H∞ approach where all the intensities σ
ǫ
, σ

b

and σ
c

are modeled as random non-anticipative processes with finite second-order

moments on [0, T ]. Consider the following estimator:

[
d̂q

t

d̂c
t

]
=

[
[ 1

2 Ω(ω
t
− ĉ

t
) − K̂qHt]

−K̂cHt

]
q̂

t
dt (68)

q̂
t
(0) = q̂0; ĉ

t
(0)=ĉ0

where K̂q and K̂c are the matrix blocks of K̂
t
, with the apropriate dimensions. Let

q̃
t
, c̃

t
denotes the additive estimation error, i.e., q̃

t
= q

t
− q̂

t
and c̃

t
= c

t
− ĉ

t
.

Given a positive scalar, γ > 0, we seek for a gain process, {K̂
t
, 0 ≤ t ≤ T }, such

that the following H∞ criterion is satisfied

E{

∫ T

0

‖q̃
t
‖2 dt} ≤ γ2E{‖q̃0‖2 +

∫ T

0

[σ2
ǫ

(t) + σ2
b

(t) + σ2
c

(t)] dt} (69)
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Whenever Eq. (69) is true, it is said that the L2-gain property is satisfied

from {q̃0, σǫ(t), σ
b
(t), σ

c
(t)} to {q̃

t
, c̃}, 0 ≤ t ≤ T . The augmented process

{q̂
t
, ĉ

t
, q̃, c̃} is governed by the following stochastic Itô differential equation

⎡
⎢⎢⎣

d̂q
t

d̂c
t

d̃q
t

d̃c
t

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
2 Ωt − K̂qHt −

1
2 Ξ(q̂

t
) O O

−K̂cHt O O O

O O 1
2 Ωt − K̂qHt −

1
2 Ξ(q̂

t
)

O O −K̂cHt O

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

q̂
t

ĉ
t

q̃
t

c̃
t

⎤
⎥⎥⎦ dt (70)

+

⎡
⎢⎢⎣

O4×3

O3

− 1
2 Ξ(q̂

t
)

O3

⎤
⎥⎥⎦ σ

ǫ
(t)dβt +

⎡
⎢⎢⎣

O4×3

O3

O4×3

I
3

⎤
⎥⎥⎦ σ

c
(t)dν

t
+

⎡
⎢⎢⎣

O4×3

O4×3

K̂q
1
2 Ξ(q̂

t
)

K̂c
1
2 Ξ(q̂

t
)

⎤
⎥⎥⎦ σ

b
(t)dηt

where second-order terms with respect to the noises β
t
, ν

t
, η

t
and to the estimation

errors q̃, c̃ have been neglected. Equation (4) may be re-written in the following

compact form:

dqa
t

= F aqa
t
dt + G1(q

a
t
)σ

ǫ
(t)dβt + G2(q

a
t
)σ

c
(t)dν

t
+ G(qa

t
)σ

b
(t)dηt (71)

The remainder of the filter development is straightforward and is omitted for the

sake of brevity.

5 Numerical Simulation

Consider a spacecraft rotating around its center of mass with the following time-

varying inertial angular velocity vector, ωo(t):

ωo(t) = [1 − 1 1]T sin(2πt/150) [deg/sec] (72)

The measured angular velocity is computed according to

ω(t) = ωo(t) + σ
ǫ
ǫ(t) (73)

where ǫ(t) is a standard zero-mean white Gaussian noise, e.g., E{ ǫ(t) ǫ(τ)T } =
I
3
δ(t − τ). Typical values of low-grade gyros will be used in the ensuing, i.e.,

σ
ǫ
∈ [10−3, 10−1] [rad/

√
sec]. A continuous-time single line-of-sight measurement,

b(t), is assumed to be acquired. It is computed via the classical vector measurement

model:

b(t) = A[q(t)] r(t) + σ
b
δb(t) (74)

where δb(t) is a zero-mean white Gaussian noise and E{ δb(t) δb(τ)T } ≃ ( I
3
−

bbT )δ(t − τ), which stems from the unit norm property of b. The time history of
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the reference line-of-sights, r(t), is chosen arbitrarily at this stage of the simulation

study. Typical values of coarse and fine attitude sensors will be used in the ensuing,

i.e., σ
b
∈ [10−5, 10−1] [rad]. The simulated sampling time for the gyro and atti-

tude sensor (continuous) processes is ∆t = 0.1sec. The true initial quaternion is

q(0) = [1, 1, 1, 1]T/
√

4. The filter is usually initialized with q̂(0) = [0, 0, 0, 1] and

P̃ (0) = P̂ (0) = 10 I
4

unless stated otherwise. Monte-Carlo simulations (50 runs)

were run over time spans varying from 500 to 6000 seconds. This shows the esti-

mation performances over several periods of the angular velocity dynamics, up to a

typical revolution time of a Low-Earth-Orbit satellite around the Earth. For the pur-

pose of comparison, the quaternion Kalman filter of [5], which will be referred to as

QKF (where the linear measurement model (73) is used), and a typical Multiplica-

tive EKF [3], referred to as MEKF (where the nonlinear measurement model (74) is

linearized) were also implemented. The novel stochastic H∞ quaternion estimator

will be denoted as QHF.

The performances of the quaternion H∞ filter that achieves a γ-level attenuation

from the intensity σ
ǫ

(and the initial estimation error) to the estimation error were

presented in [7].

Unknown gyro noise and attitude sensor intensities, σ
ǫ

and σ
b

Next, we summarize the performances of the quaternion H∞ filter that achieves

disturbance attenuation from the unknown σ
ǫ

and σ
b

(and the initial estimation error)

to the estimation error. Extensive Monte-Carlo simulations were run in order to

compute the actual attenuation ratio AR(T ) at the final time T , with T = 500 sec.

The ratio is defined as follows:

E{
∫ T

0
‖q̃(t)‖2 dt}

E{‖q̃(0)‖2 +
∫ T

0 (σ2
ǫ

+ σ2
b

) dt}
(75)

where the integral is numerically computed using a time step ∆t = 0.1 sec,

and the expectations are computed as MC averages. Table 1 shows values of the

AR(500sec) for various values of σ
ǫ

and σ
b
. Also, the MC means of the best guar-

anteed level of attenuation, γ2
QHF , were computed along the filtering process. Ta-

ble 1 shows their values in steady-state, which is in general reached after 100 sec.

Disturbance attenuation ratios from 0.45 down to 0.06 are achieved by the H∞ fil-

ter. The filter has a better (attenuation) efficiency for higher levels of disturbances.

For small noise intensities, the AR(500) are similar and show a strong variation

in the range of (10−2, 10−1). This hints at the fact that the H∞ filtering approach

can be exploited when using low-grade sensors, which are characterized by high

levels of noises. As expected from the theory, the AR(500) are all smaller than the

corresponding guaranteed levels of attenuation, i.e., AR(500) ≤ γ2
QHF . The dis-

crepancy between both quantities, however, depends on the noise intensities. For

instance, when (σ
ǫ
, σ

b
}) are equal to (0.1, 0.1), the actual attenuation ratio (0.08)is

30 times lower than the guaranteed level. On the other end of the table, in the van-

ishing noises case, the AR(500) is only six times lower. Therefore, it seems that the

performance bound is more efficient, e.g., closer to the actual performance, for low
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noise intensities. Moreover, one can observe that the maximal values for γ2
QHF as

well as for the attenuation ratio AR(500) occurs when σ
ǫ

and σ
b

are both zero. This,

indeed, stands in good agreement with the analysis previously presented, where the

case of vanishing disturbances is the worst case scenario for the H∞ filter.

Figure 1-a depicts the time histories of the MC-means (50 runs)for AR(t) and for

γ2
QHF , 0 ≤ t ≤ 2000 sec. The best guaranteed bound, γ2

QHF is quickly reaching

a steady-state around 2.25, while the attenuation ratio is more slow to settle on a

steady-state at 0.06.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
−2

10
−1

10
0

10
1

10
2

steps (ΔT=0.1 sec.)

 

 

Guaranteed γ2

QHF

Actual Attenuation Ratio AR

(a) AR(t) and γ2
QHF
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0.1

0.3

0.5

Time   [sec]

δ
Φ

  
 [

d
e

g
]

(b) δφ MC-mean and MC-σ

Fig. 1 Performances of the QHF filter. 50 MC runs. (σǫ , σ
b
) = (0.001, 0.1).

Figure 1-b presents the time histories of the MC-means and MC-standard devi-

ation envelop of the angular estimation error, δφ. Albeit oscillating with an am-

plitude of 0.06 deg around 0.08 deg, δφ shows good performances: recalling the

Table 1 Attenuation Ratios AR(500sec) (50 MC runs) between the quaternion estimation

error, q̃, and the disturbances { q̃(0), σǫ , σ
b
} for various values of the intensities { σǫ , σ

b
} .

(Value of the steady-state MC-mean for the smallest reachable γ2
QHF , as computed in the

filter.)

σǫ [ rad√
sec

]

σ
b
[rad]

0 10−3 10−2 10−1

0
(2.89)

0.45
(2.89)

0.45
(2.79)

0.44
(2.32)

0.06

10−3
(2.89)

0.45
(2.65)

0.45
(2.60)

0.44
(2.32)

0.07

10−2
(2.78)

0.44
(2.53)

0.43
(2.46)

0.41
(2.31)

0.07

10−1
(2.41)

0.16
(2.40)

0.15
(2.39)

0.15
(2.25)

0.08
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Table 2 Time-averages (and time standard deviations) of the quaternion estimation errors in

QHF (right) and in MEKF (left) for various values of the intensities {σǫ , σ
b
}. Single run. The

final time is 2000 sec.

σ
b
[rad]

σǫ [ rad√
sec

]
10−3 10−2 10−1

MEKF | QHF MEKF | QHF MEKF | QHF

10−7
(1.2 10−5 | 1.4 10−3)
3 10−5 | 2 10−5

(1.0 10−4 | 1.4 10−3)
0.003 | 0.003

(0.015 | 0.080)

0.020 | 0.017

10−5
(2.1 10−4 | 1.4 10−3)
5.1 10−5 | 1.3 10−5

(9.0 10−4 | 1.4 10−3)
0.008 | 0.007

(0.015 | 0.080)

0.020 | 0.016

10−4
(1.2 10−4 | 1.4 10−3)
1.5 10−5 | 1.3 10−5

(2.0 10−3 | 2.1 10−3)
0.0001 | 0.0003

(0.015 | 0.082)

0.020 | 0.015

10−3
(1.2 10−3 | 1.4 10−3)
7.9 10−5 | 2.0 10−5

(3.7 10−3 | 1.2 10−2)
0.0196 | 0.0008

(0.015 | 0.081)

0.020 | 0.002

10−2
(1.6 10−3 | 2.0 10−3)
1.3 10−5 | 1.2 10−5

(0.0120 | 0.0124)

2.8 10−5 | 1.4 10−4
(0.019 | 0.080)

0.020 | 8.4 10−4

10−1
(1.6 10−3 | 1.6 10−2)

4.80 10−5 | 3.30 10−6
(0.0172 | 0.0192)

0.0001 | 0.0001
(0.116 | 0.084)

2.60 10−3 | 6.80 10−4

measurement noise level σ
b
, equal to 5 deg, the QHF provides an attenuation ratio

of order 0.02 ≃ 1/50.

Extensive simulations were performed in order to compare the performances of

the QHF and of a standard quaternion Multiplicative EKF (MEKF). In the MEKF,

the measurement equation model, which is quadratic in q
t

is linearized around the

estimated trajectory. The MEKF is matched to the true levels of noises. For com-

parative purposes, we consider the additive estimation errors in both filters. Table 2

shows the time averages, computed on single runs of 2000 sec, of the quaternion

estimation error norm in QHF (right) and in MEKF (left). In addition, the values of

the time standard deviations are provided for both filters (in parenthesis). In gen-

eral, both filters provide similar time averages of the estimation error. If σ
b

remains

constant and σ
ǫ

is increased, then no significant changes appear. However, when

increasing σ
b
, while keeping σ

ǫ
constant, there is a proportional increase in the time-

average of the error. As expected, the MEKF provides smaller standard deviations

of the quaternion error than QHF, since MEKF approximates the minimum vari-

ance estimator. Increasing σ
ǫ
, while keeping σ

b
constant, does not affect the perfor-

mances (standard deviation’s level) of QHF. On the other hand, the dispersion of the

estimation error in MEKF grows proportionally with σ
ǫ
. The same fact can be ob-

served when increasing σ
b

while keeping σ
ǫ

constant. This property goes is readily

explained via the approach used for the filter’s development.
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Fig. 2 Quaternion estimation errors in QHF (dashed blue) and in MEKF (full red). 50 MC

runs. (σǫ , σ
b
) = (0.01, 0.1).

Additional Monte-Carlo simulations were performed for specific levels of the

noises. Figure 2-a depicts the MC-standard deviations of the additive quaternion

estimation errors in the QHF and in the MEKF, for the case (σ
ǫ
, σ

b
) = (0.01, 0.1). As

expected, the values of σ in the MEKF (around 2 10−3 are significantly lower than

in the QHF (around 2 10−2. This is consistent with the property that the MEKF is

approximating the minimum-variance estimator. Figure 2-b shows the time histories

of the MC-means of the quaternion estimation errors, for (σ
ǫ
, ) = (0.001, 0.1). The

errors appear to be unbiased in both filters. The MEKF plots, however, are smoother

than those of the QHF. Further, we tested both filters in cases where the true levels

of noises where not accurately known. This may be the result of on-board failures

of gyros or attitude sensing devices, which, while undetected, render the MEKF

unmatched and probe to divergence. In Case A, the filter level of σ
b

was fixed to

ten times its true value. As a consequence, as can be seen from Fig.2-c, the MEKF

is very slow to converge. On the other hand, the QHF, which design is essentially

independent from the actual values of the noise intensities, produces means that are
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close to the levels obtained in the previous simulation (Fig. 2-a). In addition, we

tested in Case B an unmatched MEKF where the filter σ
b

is ten times lower than the

true one. As a result, the estimation errors in the MEKF converge quicker but to a

noisier steady-state, which is expected from the Kalman filtering theory. The QHF,

on the other hand, provides essentially the same performances as in Case A. The

slight differences arise from the fact that the QHF implement data that are noisy,

and, thus, the QHF performances are indirectly affected by the level of noises.

6 Conclusion

In this work, a novel quaternion attitude estimator was developed in the framework

of stochastic H∞ filtering using gyro measurements and line-of-sights (LOS) mea-

surements. The proposed design hinges on a model where the white noises in gyro

and the LOS measurements have unknown possibly random intensities. The case of

quaternion and gyro drift H∞ estimation was also addressed analytically. The esti-

mator computes a quaternion while attenuating the effect of the noise intensities on

the estimation error. The H∞ filter involves the solution of a set of (differential) lin-

ear matrix inequalities, which do not depend on the estimated quaternion. Extensive

Monte-Carlo simulations were run, for the case of guro white noise, showing that

the proposed filter performs well from the standpoint of attitude estimation, per se,

in a wide range of gyro and LOS intensities. The guaranteed disturbance attenuation

level seems to be slightly dependent on the noises intensities, which may be due to

the fact that the filter’s parameters are noisy. The actual level of disturbance attenua-

tion between the noises levels and the estimation error is improving when the noises

levels increases, and is minimal for (ideal) noise-free sensors. This was expected by

the analysis and illustrates the conservative nature of the H∞ filter. When compared

with two different matched quaternion Kalman filters (KF), the H∞ filter produces

higher Monte-Carlo standard deviations of the estimation error, but lower Monte-

Carlo means. The higher the level of noises are, the less obvious the advantage to

the Kalman filter is. Besides, as opposed to standard quaternion Kalman filters, this

filter’s gain process can be computed independently from the quaternion estimate

process, which makes it insensitive to estimation errors. This nice feature is fur-

ther emphasized when comparing the H∞ performances with those of unmatched

Kalman filters. When provided with too high or too low noise covariances, the KF is

outperformed by the H∞ filter, which delivers essentially identical levels of errors

within a wide range of noise intensities.
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Abstract. Pin-point landing can only be achieved developing precise Absolute 

Navigation systems. Craters, for their intrinsic properties, are one of the most 

suitable and robust features identifiable in lunar landscape. The Optical Terrain 

Absolute Navigation (OTAN) system provides absolute navigation features and is 

composed by two main parts: the off-line part, focused on the extraction of the 

Landmark Database; the on-line part instead is focused on the Real Time 

identification of the craters and the Orbit Determination process. The presented 

vision-based approach uses Real-Time crater identification in order to extract 

relevant features from on-board captured images of the lunar surface. The detected 

craters are fitted with ellipses and matched to a Lunar Crater Database previously 

created. The matching of the two sets permits the computation of the absolute 

position of the camera. A Kalman Filter uses this information and the IMU 

measurements in order to provide precise complete state space information of the 

vehicle. In this paper, a detailed description of the complete structure of the 

Optical Terrain Absolute Navigation system based on craters detection and 

recognition is provided. 

1   Introduction 

One of the most interesting challenges in descent and landing missions is PinPoint 

Landing (PPL). Considering a probe landing on a planet, the accuracy level that is 

nowadays guaranteed, in terms of distance of the achieved landing site with re-

spect to the target site, is not smaller than the order of magnitude of tens (or even 

hundreds) of kilometers [1]. Instead, PPL requires a few hundreds of meters wide 

error ellipse, that is to say about two-three orders of magnitude smaller than the 

one achieved.  

                                                           
Marco Mammarella · Marcos Avilés Rodrigálvarez · Andrea Pizzichini ·  

Ana María Sánchez Montero 

GMV, Tres Cantos, Spain 

e-mail: mmammarella@gmv.com, maaviles@gmv.com,  
andrea.pizzichini1@gmail.com, amsmontero@gmv.com 



420 M. Mammarella et al.

 

Various PPL solutions have been proposed in recent years for example: 

VISINAV (vision aided inertial navigation system), which its main drawback is its 

high memory requirement due to the usage of image correlation in finding mapped 

landmarks [2]; in [3], authors use SIFT features (Scale Invariant Feature Trans-

form) as mapped landmark to estimate the spacecraft’s global position. SIFT fea-

tures only prove to be invariant to an affine transformation in illumination change. 

Thus, they are quite vulnerable in case of important illumination changes between 

the orbiter and descent images, such as caused by the difference of the sun’s direc-

tion. [4] relies on a Lidar sensor and matching of landmark constellations. Where 

either maximum or minimum of the surface’s height and slope are extracted as 

landmarks from the surface elevation image provided by the Lidar sensor. The 

metrics distances of a landmark with its neighbors are used as it signature. Then a 

matching is performed between the surface and the DEMs landmarks. The main 

problem to this solution is that the system requires the resolution of the surface 

image obtained with the Lidar sensor to be equivalent to that of the map image.  

In [5], modification Harris corner detection is used to extract landmarks from 

orbital and camera images. Landmarks from orbital images are stored onboard in a 

database. The two sets of landmarks are matched through constellation method 

and the absolute position is extracted. The main drawback of this method is the 

requirement of prior orbital images with similar environmental conditions (and not 

yet clearly specified). Furthermore, the number of stored landmarks and associate 

information can be a serious issue to handle since in each image a relatively big 

number of landmarks need to be stored. In order to rapidly access the database in 

real time, the database must be handled carefully. 

All of the PPL solutions have at least the following functionalities: landmarks 

extraction, landmarks matching and position estimation. The present paper pre-

sents a complete description of an Automated Lunar Lander system, which has 

been designed to be compliable with different solutions but has been implemented 

using craters as landmarks.  

Craters have been claimed by several authors [5] to be excellent landmarks due 

to its scale, rotation and illumination invariance properties. Crater shapes com-

monly correspond to a known geometric model (ellipse), invariant to scale 

changes and orientation between the spacecraft camera and the surface. The main 

drawback of craters, instead, is the not easily method of identification especially 

when the Image Processing algorithm has to deal with irregular and overlapped 

craters. In the developed method these issues are limited through appropriate  

pre-filtering function and discarding ambiguous craters directly in the database 

creation.  

Optical Terrain Landmark Navigation (OTAN) is an absolute navigation sys-

tem conceived to perform PPL in a fully autonomous way. It exploits optical navi-

gation techniques in order to support and, if necessary, to correct, the propagation 

data of an Inertial Measurement Unit (IMU) in conjunction with Ground Tracking 

(GT) measurements. 

The present paper describes the complete structure of the OTAN applied to the 

ESA NEXT-MOON [6] mission. In particular, after giving an overview of the 
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mission scenario and explain the necessity of optical navigation, a complete de-

scription of the OTAN system is provided. 

2   Mission Overview 

The ESA NEXT-MOON mission [6] is the mission scenario in which OTAN 

technology is applied and tested. A typical GNC design for the NEXT-MOON 

Lunar Lander mission may consider the Descent and Landing trajectory as divided 

in four principal phases: Orbital, Main Braking, Visual and Terminal Descent 

Phases. A synthetic overview of the four phases is given in Table 1. 

Table 1 Mission Overview 

ORBITAL 
Phase name 

LLO 
DESCENT 

ORBIT 

MAIN 

BRAKING 
VISUAL 

TERMINAL 

DESCENT 

Characteristics 

Free-

flight 

orbit. 

Free- 

flight  

orbit. 

Maximum 

thrust. 

Landing site 

inside FOV, 

reduction of 

thrust level. 

Pure vertical 

descent 

Altitude range

(approximate) 
100 km 

100 to 15 

km 
15 to 4-3 km 

4-3 km to  

15-5 m 
15-5 m– until 

Touchdown 

 
It can seem obvious that the most critical phases in a PPL mission are relative 

to visual and terminal phases. This is actually only partially true because if exces-

sive dispersion in the navigation solution is accumulated in the first phases, these 

errors cannot be recovered during the last phases because of mass-budget and ma-

neuverability limits and, also, due to the lack of a system able to recognize the 

landing site [6]. These limits are such that the only way to achieve PPL is to limit 

in all phases the dispersion as much as possible. The here described OTAN system 

has been conceived for providing a precise navigation solution during the orbital 

and main braking phases. It has to permit to reach the beginning of the visual 

phase well below the typical dispersion due to inertial navigation.  

3   Optical Terrain Absolute Navigation System 

Figure 1 shows the proposed Optical Terrain Absolute Navigation system able to 

recognize craters. The sources can be either geo-referenced images or DEMs. 

From these sources, the landmark extraction shall extract the coordinate and some 

geometrical properties of the craters off-line. Consequently, the resulting Land-

mark Database will be extracted off-line and stored on-board in order to be used. 

It is required that the spacecraft mounts a Camera providing image data, a Star 

Tracker providing the attitude data and IMU providing acceleration data. The im-

age will be processed by the Lander Acquired Image Landmarks Extraction func-

tion, which is an IP function able to extract the craters on-line. This function  

can use data from the navigation filter in order to reduce computational time. The 
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Database projection function uses attitude data and position estimation data pro-

vided by the filter in order to predict which landmarks are expected to be seen in 

the current image. The landmark matching function finds the correspondence be-

tween the Lander acquired image landmarks and the expected Landmarks. The 

Absolute Position Estimation uses the knowledge of the attitude data, Landmarks 

Database and matched landmarks for computing Absolute Estimated Position. The 

matched landmarks are then checked by the Landmark Integrity function in order 

to select the most appropriate landmarks that have to be used for the position 

computation. The position is next provided to the Navigation filter with the land-

mark integrity in order to estimate the complete state vector. In next sections, each 

block of the OTAN system is described in more detail. 
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Images

DEM

Landmarks 

Extraction

Landmarks 

Database
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Camera
Image

Lander 

Acquired 

Image 
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2D projection
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Position

Navigation 

Filter
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OFF-LINE

ON-LINE

Sensor

Process

Data

Source

Landmarks 

Integrity

 

Fig. 1 Optical Terrain Absolute Navigation System  

4   Landmark Database Creation 

Creating a reliable landmarks database is a fundamental step in the system because 

the spacecraft positioning will be relative to this database. However, after decades 

of research and manual efforts, only tens of thousands of the millions of craters on 

the Moon have been catalogued, mainly those with diameters ≥ 2 km. Automated 

techniques for crater detection and cataloguing are therefore necessary. They take 

advantage of the vast quantities of remotely sensed data now available, especially 

now that precise 3D information is becoming available [7]. 

Crater detection techniques in DEMs are not very different from those em-

ployed in optical images (described in the following section). The edge detector  

is replaced with an extractor of high slope areas, whose binary output feeds the 



Advanced Optical Terrain Absolute Navigation for Pinpoint Lunar Landing 423

 

feature extraction stage. Template matching or voting schemes are the typical op-

tions for this second step as other alternatives that take into account the lighting 

effects cannot be considered for elevation maps. 

Crater rims in a DEM can be effectively marked by searching for the zero 

crossings of the second-order derivative. After applying this process, the zero-

crossings are identified and those above a certain threshold are marked.  

The feature extraction stage mainly consists in performing the circle detection 

of the image obtained in the previous stage. The circle finding has been broken in 

two parts: center detection and radius estimation. A final step of ellipse fitting and 

refinement in the DEM image domain is recommended to fine tune the estimated 

parameters, deal with elliptical craters and remove errors introduced in the previ-

ous steps. When optical images corresponding to the DEM are also available, a 

parallel branch can be added to the system to extract a new set of craters and 

match its output with the one coming from the DEM. Figure 2 shows the results of 

this process in a section of the DEM obtained by LRO [7] and the visualization of 

a portion of the DEM using PANGU [8] with the obtained craters. 

 

 

Fig. 2 LRO DEM [7] and identified craters (left), projection of the craters of DEM section 

using PANGU (right) 

5   Lander Acquired Image Landmarks Extraction 

The Lander Acquired Image Landmarks Extraction [9][10] has been designed fol-

lowing the approach presented in [1][11] and summarized in Figure 3. Namely, 

three stages can be identified in the algorithm: Border Detection (divided in Edge 

Detection and preliminary crater rim selection), Rim Grouping (composed of cur-

vature check and crater border coupling) and Ellipse Fitting. 
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Fig. 3 Lander Acquired Image Landmarks Extraction scheme 

5.1   Border Detection  

The first step of the Border Detection process is the Edge Detection. The Edge 

Detection is a standard image processing technique [12] by means of which object 

outlines are identified in an image. Considering a picture as a brightness function 

depending on the two spatial coordinates (vertical and horizontal), edges can  

be defined as local maxima of the just mentioned function. The concept can be 

quantified recurring to the gradient of the brightness function, giving two kinds of 

information: 

1) Gradient magnitude. Given a generic picture-element (pixel), higher is  

the gradient magnitude higher is the probability to encounter an object  

border. 

2) Gradient direction. It gives information about the border direction, which 

is always perpendicular to the gradient vector. 

Edge detection is the basis of the following steps. In fact, the aim of the whole al-

gorithm is to identify the crater shapes among the other terrain features. Recogniz-

ing an object means, in this case, to associate its outline to a mathematical model, 

like an ellipse. Therefore, Edge Detection gives a first set of borders, in which the 

crater rims have to be selected among the other surface characteristics. Several 

different techniques are available in literature. The Border Detection process uses 

Sobel edge detector, which allows a sufficient level of accuracy with a non-

excessive computational load. 

The Edge Detection output image is a binary image in which each identified 

edge pixel is set to the ‘1’ value. Non-edge pixels are, instead, set to ‘0’. In gen-

eral, apart from edges actually belonging to craters, many other object outlines 

(e.g. mountains) are detected by the Edge Detection algorithm. The next step of 

the Lander Acquired Image Landmarks Extraction process operates a selection in 

order to keep as many crater pixels as possible, discarding the ones belonging to 

other objects. Craters, due to their particular geometric shape, have also a well-

defined illumination profile, which can be exploited in order to operate the  

abovementioned pixel selection. As can be seen in the left part of Figure 4, the  

regions with the highest contrast are the ones perpendicular to the light direction 

(directed horizontally from left to right in the Figure). Moreover, considering  

the crater edges, such regions present themselves as curved segments, easily rec-

ognizable by the algorithm. The preliminary crater rim selection consists in the  
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Fig. 4 Typical crater illumination profile (left), overview of the border detection process 

(right)  

evaluation, at each edge point identified by the Edge Detector, of the gradient di-

rection (perpendicular to the edge direction) with respect to the illumination unit- 

vector. 

5.2   Rim Grouping 

After performing the Border Detection stage (Right part of Figure 4 gives an 

overview of the whole process), crater edges present themselves as typical curve 

segments that are called crater signatures. Notice that each crater is characterized 

by a couple of such segments, one related to the lit side and the other one to the 

shaded side (see Figure 4). Both sides of the crater signature are to be taken to-

gether in order to be successfully fitted by the ellipse-specific fitting algorithm. 

This can be quantitatively translated in assigning a single label value to the pixels 

belonging to the whole crater signature. It is what is performed by the Rim Group-

ing process, which is divided in the Curvature Check and Crater Border Coupling 

steps [9][10]. The output sets of rim grouped are provided as input to the Ellipse 

Fitting. 

5.3   Ellipse Fitting 

Ellipse Fitting is the last stage of the Lander Acquired Image Landmarks Extrac-

tion. It applies an ellipse-specific fitting algorithm [13] to the border couples pro-

vided by the Rim Grouping block. Each crater candidate is fitted with an ellipse in 

order to take into account off-nadir Camera attitudes, which cause craters to be 

represented in the image as ellipses instead of circles. Although two selection 

checks have been performed in the previous stages, some non-crater borders can 

be mistakenly considered as crater signatures. In particular, false detections may 

present very high eccentricities. Therefore, a first check is done discarding too ec-

centric ellipses. Moreover, a further and more accurate check is performed using 

the fitting error and discarding the ellipses, which are characterized by the worse 

fitting. At the end of the process, each crater is associated with five parameters 

(i.e. the ellipse parameters): 2-D center coordinates, semi-axes lengths (both major 

and minor) and orientation. The list of crater ellipse parameters is the final output 

of the Lander Acquired Image Landmarks Extraction process. Figure 5 shows cra-

ters detected in images captured from LRO and Kaguya. 
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Fig. 5 Craters Detected in images captured from LRO (left) and Kaguya (right) 

6   Database 2D Projection 

The Database 2D projection algorithm projects the Landmark Database craters 

generating a crater distribution as would be seen by a hypothetical camera sharing 

the Lander attitude and estimated position. The output of the algorithm is a list of 

parameters, similar to the one generated by Lander Acquired Image Landmarks 

Extraction process. In fact, the list created by the Database 2D projection can be 

considered as the output of a “perfect” Lander Acquired Image Landmarks Extrac-

tion process if the estimated position and attitude were correct. 

7   Landmarks Matching 

Once the output of Lander Acquired Image Landmarks Extraction and the output 

of the Database 2D Projection are available, the problem becomes a typical Point 

Matching problem [14] where two sets of points with different dimension have to 

be matched together. In this case, four-dimensional Point Matching (PM) can be 

applied in order to give more robustness to the solution. The four dimensions 

available to the process are the two coordinate in the camera plane and the length 

of the both semi-axes of the ellipse for each crater, in substitution the orientation 

of the crater can be used instead the length of one semi-axis. The process of Point 

Matching has been extensively described in [14]. 
Figure 6 aims to illustrate the complexity faced during the Landmarks Match-

ing process. The figure shows the analysis performed on a captured 512 x 512 
frame. The black ellipses represent the projection of the database craters, while the 
red ellipses are the craters detected on the captured frame. The landmarks match-
ing phase will associate the detected craters (in red) to the database craters (in 
black), using a four-dimensional Point Matching. As a result, the Landmarks 
Matching will return pairs of craters (one from the database and one from the cap-
tured frame). Matches are marked in the figure as a blue crosses joined by a blue 
line, where the crosses are located in the center of the database craters matched 
and in the center of the detected craters. 



Advanced Optical Terrain Absolute Navigation for Pinpoint Lunar Landing 427

 

 

Fig. 6 Complexity of the Landmarks matching 

8   Landmark Integrity 

The Landmark Integrity function is an ulterior check performed before the Abso-

lute Position Estimation. Since the Landmark Matching can be wrong, this func-

tion has the purpose of eliminating false matching or at least informing the Navi-

gation filter that the new measurement is corrupted. The landmark integrity is 

performed using the Database 2D Projection data and the matched craters, the two 

sets of points are compared using proximity and rigidity criteria. If one or more 

craters are considered as an invalid matching the craters are removed from the 

subset whenever the number of craters is still larger than four. If the number is less 

than four the covariance matrix of the filter will be modified in order to provide 

the filter the information that the actual measurement is corrupted.  

 

Fig. 7 Landmark Integrity process 
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Figure 7 shows the operation performed by the Landmark Integrity block. A 

false match can be detected in the figure on coordinates (450,105), this wrong 

matching is detected by the Landmark Integrity algorithm and the matching is de-

leted in the Absolute Position Estimation process. 

9   Absolute Position Estimation 

The Absolute Position Estimation algorithm uses the information of the Crater Da-

tabase, the attitude information provided by the Star Tracker and the Landmark In-

tegrity output for computing the Absolute Position Estimation [15]. A minimum of 

four craters are requested to be provided by the Landmark Integrity process in or-

der to reach the requested level of accuracy. The output of this block is usually the 

distance of the camera to the origin of the reference frame in which the Crater Da-

tabase is expressed. Since the position and orientation of the camera in the vehicle 

is known, the vehicle position can be computed. 

10   Navigation Filter 

The navigation filter includes a complete model of the Moon gravity containing 

the central term and the LP165 error gravity model. The filter is a Linear Kalman 

Filter (KF) able to integrate different sensors working with different frequency. 

This is particularly important when the measurement of different sensors have to 

be integrated / fused in order to obtain a more precise quantity. In the following 

figure is represented a schematic version of the Navigation filter. It requires the 

gravity components of the acceleration and the measurements provided by the 

OTAN system and the IMU. The sensor weight logic decides how much and when 

a sensor has to be trusted. Namely, it receives information of the Landmark integ-

rity in order to transmit the information that the measurement can be corrupted or 

if more than four craters are recognized the covariance matrix is properly adjusted. 

In addition, when the vehicle is in the orbiting phase the accelerometer is dis-

carded from the measurement whenever the acceleration is inside a certain thresh-

old derived from the IMU noise parameters. 

Acceleration

Kalman

Filter
Estimated 

Position

Covariance 

Matrixes

Gravity 

Estimation

Output 

Covariance

Position

Velocity

Acceleration

S/C IMU

OTAN System

 

Fig. 8 Navigation Filter structure 
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The Kalman gain KF is computed applying the formulas described in [16]. The 

matrixes Q and R used in the KF computation contain the covariance of the state 

and measurement noises. Q and R are time variable and they determine when each 

sensor has to be considered and how much it has to be trusted. The initialization of 

the filter is performed using Ground Tracking measurements and the filter has to 

be able to start from almost lost in space condition.  

11   Conclusion and Future Works 

This paper has presented the Optical Terrain Absolute Navigation (OTAN) system 

being developed at GMV. Different parts of the system have been tested in simpli-

fied simulation environment [9][10] providing encouraging results in line with the 

expected accuracy. In particular, the on-line part of the system has shown robust-

ness to illumination condition and to error in attitude less than 0.1 degrees. Infor-

mation derived by the mentioned analysis has been used in an end-to-end GNC 

simulator showing that pinpoint landing is only achievable when precise absolute 

navigation is present in the orbital and main braking phases of the mission [6]. 

Extensive test campaigns are planned to be performed in the close future in the 

frame of ANTARES project, where the presented system will be extensively com-

pared with [5]. In the project both systems will be adapted to a common architec-

ture and the same test will be performed in both systems making the comparison 

straightforward. The objective is to bring the technology to TRL 4. 
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Methodologies to Perform GNC Design and 
Analyses for Complex Dynamic Systems Using 
Multibody Software 

*
 

G. Baldesi, T. Voirin, A. Martinez Barrio, and M. Claeys 

Abstract. Virtual simulation is currently a key activity that supports the specifica-

tion, design, verification and operations of space systems. Taking advantage of 

dynamics research activities, ESA has currently been developing a multibody 

software (DCAP) together with industry for more than 30 years heritage in space 

applications. This software is a suite of fast, effective computer programs that pro-

vides the user with capability to model, simulate and analyze the dynamics and 

control performances of coupled rigid and flexible structural systems subjected to 

possibly time varying structural characteristics and space environmental loads. 

With the implementation of dedicated interfaces to other specialised software 

(such as NASTRAN, CATIA or Matlab/Simulink), it is possible to reproduce, 

with a quite good level of details, most of the key subsystems (such as trajectory, 

structures, configuration, mechanisms, aerodynamics, GNC and propulsion) of the 

launch vehicle and/or spacecraft in a single simulation.  

In this paper, an overview of two GNC studies, a generic launch vehicle feasi-

bility study and a spacecraft with no-conventional configuration, is presented.  

1   Introduction 

Rigid modelling of systems has proved to be efficient in many applications for 

AOCS/GNC designs. Nevertheless, in some specific cases, such as high resolution 

imaging satellites, high accuracy pointing space telescopes, or launchers, the flexi-

ble dynamics content of the system become a driver for the AOCS/GNC design, 

requiring ad-hoc dynamics model at the very first start of the project (feasibility 

phase, or phase 0).  

To cope with this problematic, ESA/ESTEC has developed an in-house capabil-

ity and methodology aiming at improving the flexible dynamics modelling and the 

subsequent GNC design.  The purpose of the paper is to explain this strategy and 
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its adaptation to two real applications, namely the generic launcher, and the IXO 

X-ray space telescope, focusing more on the tools and methodology adopted in 

that frame than in the actual discussion of the results. 

2   Multibody Dynamics in Aerospace Applications 

In recent years, space-system design has shown a clear trend towards increasing 

complex configurations. Typical examples are the use of several flexible compo-

nents (antennas and solar arrays), the need for deployment and retrieval mecha-

nisms, the demand for high precision pointing systems, and the increase in mission 

scenarios implying the assembly of large structures in space. This trend has also 

caused an evolution towards a multi-disciplinary design approach, particularly in 

the area of dynamics and control [1]. 

In order to study the performance of generic controlled dynamic systems, it is 

essential to have a dedicated tool, which allows the user to model, in a short time, 

the complex behaviour of the dynamic systems and their interactions with the con-

trol. In fact, some systems require a model with more than one body in order to 

take into account their different characteristics and their mutual dynamic interac-

tions. This task is complex and requires dedicating some time to understand, code 

and validate the dynamic behaviour of the system. 

A lot of research has gone into the development and improvement of multibody 

software, with the aim of reducing the time of modelling a system and the compu-

tation time required to run an analysis. Multibody software involve the derivation 

of the equations of motion for multibody systems, which are systems characterized 

by several bodies connected by hinges that permit relative motion across them. 

Robots, launchers and spacecraft including articulated appendages like solar ar-

rays are typical examples of this kind of complex dynamic systems. 

ESA has a long experience in using multibody software in order to analyse 

complex dynamic systems [2]. For this purpose, several software (such as DCAP, 

Adams and Samcef/MECANO) are currently used in different studies [3]. 

2.1   DCAP Software 

Early approaches to the dynamics formulation for multibody systems lead to the 

equations of motion, for open-loop tree topologies, of the form:  

qMF $$=  

where, M is an (n x n) mass matrix, q = [q
1
 q

2
 … q

n
]

T
 is an (n x 1) column matrix 

representing the generalised coordinates and F is the column matrix containing the 

contributions from centrifugal, Coriolis and external forces. 

For a numerical simulation of such a system, the mass matrix must be inverted. 

Since the inversion of an (n x n) matrix involves operations proportional to the cu-

bic power of n, this is called an Order(n
3
) approach. As the number of degrees  
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of freedom increases, this matrix inversion for every integration step, becomes 

computationally expensive. Thus, researchers have sought methodologies to cir-

cumvent the mass matrix inversion and to improve computational efficiency. The 

research into improvements in formulations that increase computational speed re-

sulted in - what are today called - Order(n) algorithms. The reason for this nomen-

clature is that the computational burden in these schemes increases only linearly 

with n. More details have already been presented in [4]. 

DCAP, which has currently been used in the Structures & Mechanisms Divi-

sion at ESTEC (ESA), has the possibility to simulate the same problem perform-

ing the analysis based on Order(n3) approach, derived by Lagrange method, and 

on Order(n) one using Kane's method of generalized speeds.  

The development work that was undertaken during years by Alenia Spazio un-

der ESA contract, culminated in the production of DCAP the Dynamics and Con-

trol Analysis Package [5]. DCAP is a suite of fast, effective computer programs 

that provides the spacecraft analyst with a powerful tool for designing and verify-

ing the dynamics and control performance of coupled rigid and flexible structural 

systems. For the latter a dedicated symbolic manipulation pre-processor, used in 

the coding optimisation, has been coded in order to compute the minimum set of 

equations of motion for each particular problem. 
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Fig. 1 DCAP features overview 

The modelling capability is completed with the possibility of user-defined envi-

ronment, allowing for modelling of specific control feature not directly included in 

the dynamic package's library. For the latter control modelling, straightforward in-

terface with Matlab/Simulink exists.  
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Fig. 2 DCAP IF to MATLAB-Simulink (co-simulation) 

3   ESA Launch Flight Dynamics Simulator 

Since 2001, ESA Structures & Mechanisms division (TEC-MS) has dedicated an 

important amount of energy in developing a solid knowledge in launcher flight 

dynamics [6]. Using multibody software, which can model the dynamic behaviour 

of interconnected rigid and/or flexible bodies, each of which may undergo large 

translational and rotational displacements, it is possible to assess and verify per-

formances at system level. More in detail, launcher flight dynamics analysis al-

lows to verify whether the selected launch vehicle design is able to accomplish the 

mission objectives taking into account the output information provided by all 

other subsystems such as Trajectory, Structures, Mechanisms, Aerodynamics, 

Propulsion, GNC etc. In particularly, non-linear dynamic simulations have been 

run in order to assess stability in nominal and off-nominal condition, TVC angular 

deflection and general loads. 

Taking advantage of the strong know-how in dynamics, coming from long 

R&D activities in Multibody Dynamics, specific launcher flight dynamics tools 

(VEGA-DCAP-sim in Fig.1) was developed for different ESA projects in order  

to investigate not only flight dynamic effects for VEGA Support and CDF LV 

studies, but also local analyses (such as gust response, lift off, multi-payload sepa-

rations) for GSTP3/GSTP4 Ariane 5 TVC, Swarm Support, Galileo IOV & IOF 

Support, IXV support. Furthermore, multibody software is gaining importance 

also in the difficult area of coupled load analysis [7], because it allows a  

much faster and malleable approach when compared to the classic FEM based 

procedures. 
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Fig. 3 VEGA-DCAP-sim overview 

3.1   What Makes It Unique 

In a nutshell, the main characteristics of ESA launcher flight dynamic simulator 

(VEGA-DCAP-sim) are: 

• Multibody-based (easy to model the dynamics of “complex” launchers) [6] 

• Flexible or rigid bodies both with time varying characteristics [1] 

• LV flight Dynamics-Control interaction (directly imported in Matlab) [1] 

• Environment modelling for Flexible launcher including external disturbances 

[8] 

• Easy modelling non-linear effects (as misalignment, inertia influences, 

crosstalk effects, sloshing.) 

• Easy modelling of dynamic transitions (lift-off analysis, stage and payload 

separations, …) [8][9] 

• High degree of compatibilities with different software packages. 

3.2   GNC Study Applications 

3.3   Generic Launch Vehicle Feasibility Study 

3.3.1   Launcher Design and Trajectory Optimization 

The conceptual design of an expendable launch vehicle is dominated by interac-
tions between many engineering disciplines: optimal trajectories, aerodynamics, 
propulsion, structures and mass estimations. All of these disciplines are usually 
highly coupled and several iterations between them are needed to produce a 
complete vehicle design. 
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In the field of trajectory optimization, ESA has developed, improved, and 

commercialized a trajectory optimization tool called ASTOS. The entire optimiza-

tion scheme used in ASTOS has its foundations in the method of direct optimiza-

tion which requires a non-linear programming solver (NLP). 

 

 

Fig. 4 Data exchange in ASTOS multidisciplinary design optimization environment 

Recently, the trajectory optimization capability of ASTOS has been enhanced 

to include launch vehicle design optimization. In this way the tool is now capable 

of performing multidisciplinary design optimization (MDO) linking several disci-

pline models. The data exchange between these disciplines is considerable as 

many disciplines depend on input from many others (see Error! Reference 

source not found.).  

Nevertheless by means of adequate formulation of the problem and 

transcription methods, the optimal design of the vehicle together with the 

trajectory design can be obtained by means of NLP solvers using the MDO all-at-

once approach. [10,11]. 

As a result the launcher scenario has been extended by a geometry model for all 

stages and the fairing, where lengths and diameters are optimisable. Interstages 

manage different stage diameters, which allow the modeling of hammerhead con-

figurations. The aerodynamics are computed by Missile Datcom, where the shape 

is used from the geometry model. Tank models for separate, common bulkhead 

and enclosed tanks are provided to support the geometry model and the mass  

estimation.  

The mass estimation is based on regression formulas for most important com-

ponents. Alternatively, the mass estimation can be refined with a One-Beam Ap-

proximation (OBAX), which performs a structural analysis based on external and 

internal forces and weights and which results in a minimum wall thickness and 

mass estimation. Finally, the liquid engine model computes the combustion at 

equilibrium conditions with the NASA tool CEA and adds efficiency factors based 

on regression.  
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Fig. 5 Different tank configurations available 

The ASTOS tool has been used in several ESA Concurrent Design Facility 

(CDF) studies improving the design process by obtaining a more realistic initial 

guess for a launcher system design. This initial guess is then used as the starting 

point for more detail subsystem design iterations. Once more accurate data is 

available from all the other subsystem, ASTOS can also be used as a simple tra-

jectory optimization tool. 

3.3.2   Dynamic Part 

Lately, based on past successful experiments [12], the advantage of multibody 

software has also been made available to ESA Concurrent Design Facility (CDF)  
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Fig. 6 Multibody expertises in CDF environment 
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studies (Figure 6). Indeed, since CDF applies the concurrent engineering method 

to the design of future space missions [13], the use multibody software is a key 

tool for analysing performances at system level, while taking into account simul-

taneously several subsystems. In the next figures launch flight dynamics simula-

tion applications are briefly presented, which highlight the interfaces with other 

subsystems and some typical results. 

Launch vehicle dynamics having multiple noz-

zles can be easily simulated using multibody ca-

pabilities with minimal workload. An example is

reported in Fig.4, which represents an example

configuration of future launcher study. The first

stage consists of 4 boosters and a main motor

controls 5 nozzles, which can be tilted independ-

ently. Despite being a rather complex to repre-

sent, the system proved relatively straightforward

to model using the multibody tool, Therefore,

more time was invested to investigate the best

philosophy to command the individual nozzles,

which could meet the strict requirements placed

on the control part. 

 

Fig. 7 Launcher with multiple 

nozzles 

3.3.3   GNC Part 

The first step has been the elaboration of a linear model for a rigid launch vehicle. 

The resulting model is presented hereafter: 
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where U is the launch vehicle flight path speed and θΔ  represents the perturbed 

pitch angle, i.e. the difference between the reference trajectory pitch angle and the 

actual pitch angle. Similarly, z$Δ  represents the perturbed vertical component of 

the LV velocity. W is the wind velocity acting perpendicular to the launch vehicle 

and δΔ  is the perturbed  TVC deflection angle, measured with respect to the 

longitudinal axis of the LV. 

Additionally, the different coefficients present in the matrices are detailed here-

after:  
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Where: 

αL  is the derivative of the lift force with respect to the angle of attack, Q  the 

dynamic pressure, S  the aerodynamic reference area and αCN  the derivative  

of the aerodynamic normal coefficient (body axes) with respect to the angle of  

attack. 

ST  is the static thrust, which can not be deflected by the nozzle (applicable for 

boosters with no TVC) 

ST  is the “controllable” part of the thrust, deflectable by the TVC. 

D  is the drag force and U  is the velocity of the LV 

m  and yyJ  are the current mass and moment of inertia of the launcher at the 

given time. 

CoGPivotL 2  is the distance from the nozzle pivot point to the current LV center 

of mass. 

CoGCPL 2  is the distance from the current aerodynamic center of pressure to the 

current LV center of mass. 

The second step has been to design a linear quadratic regulator (LQR) at differ-

ent times of the flight, taking into account the time and frequency domain specifi-

cations. The different linearized models have been computed every 10 seconds of 

the flight.  

Once the different control laws are computed for each time slice, the gains are 

linearly interpolated resulting in the final values shown in Figure 8: 

Finally, the complete GNC system performance has been assessed using the 

DCAP simulator, which takes into account the elastic modes of the launcher. In 

order to reduce the effect of this vehicle elastic dynamics, a low-pass filter has 

been added. 
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Fig. 8 LQR gains versus time 

As mentioned before, the desired trajectory has been provided by the tool 

ASTOS. An overall overview of the DCAP simulator is shown in the following 

picture. 

 

 

Fig. 9 Launch DCAP simulator flowchart 

The results, provided in the following Figure 10, shows that the sample 

launcher analyzed is stable, the desired trajectory has been followed within 3.5 % 

of trajectory error and TVC does not exceed the design limit of 6 degrees. 

It should be noted that no active roll control was implemented in the simulation 

presented hereafter. Nevertheless the roll increase occurred during the first stage 

flight of this particular launcher is relatively small and it is not expected to cause 

major concerns in future steps of the control design. 
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Fig. 10 Sample results of the launch vehicle simulator 
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Fig. 11 IXO General Configuration (deployed). ESA CDF design 
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3.4   Spacecraft with No-Conventional Configuration 

The International X-ray Observatory (IXO) is a Large-class mission candidate 

within ESA Cosmic Vision 2015-2025 program, being studied in a cooperative  

way by ESA, NASA and JAXA. Its main feature, which is of interest for this pa-

per, is the need to extend the telescope structure from about 8 meters, as config-

ured inside the launcher fairing, up to (at least) 20 meters (to achieve required op-

erational focal length). Peculiar to the IXO telescope is the need to extend its focal 

length by a large amount (about 10 m) while ensuring extreme pointing accuracy 

and stability of the different telescope modules. The deployment principle is based 

on an innovative “articulated booms” concept, which is currently being investi-

gated within (and outside) ESA. The elastic behaviour of the booms and the non-

linear hinge characteristics (friction, backlash, hysteresis …) are modelled to 

simulate the system deployment dynamics. Application of advanced multibody 

software techniques permit the investigation of coupled structural dynamics / con-

trol system, aiming at pointing accuracy / stability performance verification. [14] 

3.5   Modelling 

3.5.1   Dynamic Part 

The dynamic behaviour of IXO spacecraft was modelled as a set of interconnected 

rigid or flexible bodies, each of which may undergo large translational and rota-

tional displacements. The service and the instrument modules are considered as  

 

 

Fig. 12 IXO multibody model 
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rigid bodies as well as the motorised and passive hinges. On the other side, the so-

lar arrays and the articulated booms are modelled as flexible taking advantage of 

the direct interface with MSC.NASTRAN. In addition of the main spacecraft free 

motion in space, “parallel kinematics” approach, uses nine revolute type of joints, 

which can benefit from the utilisation of very well known (to the space commu-

nity) building blocks. 

In order to provide mathematical models to Attitude and Orbit Control Systems 

(AOCS) and Guidance Navigation and Control (GNC) specialists (TEC-ECN) in 

ESA, IXO multibody model has been slightly modified by including system sen-

sors (accelerometers, gyros,…), actuators (reaction wheels, thrusters,…) and addi-

tional output (lateral displacement of the instrument modules with respect to the 

service one, focal length,… ).  

For this purpose two models have been generated in “fully deployed” condi-

tion: a linear and a non linear model. Taking advantage of numerical linearization 

capability of most multibody software, it is possible to obtain linear model, de-

scribed by means of the quadruplet (A, B, C, D). This mathematical model can be 

easily imported in Matlab/Simulink environment having as inputs the actua-

tors/external force & torque disturbances and as outputs the sensor/additional dy-

namics outputs. On the other side, once the control law has been setup, it is com-

pulsory to verify whether the assumptions are still validated. Furthermore, a “non 

linear” mathematical model is also generated and exported in Matlab/Simulink 

environment. The nonlinearities might be due not only to stiffness characteristics, 

transition events,… but also to the rigid motion of the whole system.  

3.5.2   GNC Part 

The size of the IXO telescope (20m) coupled with the need for relatively high 

agility (85% observation efficiency), and high accuracy pointing (10 arcs APE, 1 

arcs AME around lateral axes), lead to unusual AOCS design, relying on a swarm 

of 5 “big” reaction wheels (150 Nms – 0.4 Nm class) to control the attitude of the 

spacecraft. The coupling of AOCS with flexible structure has to be analyzed care-

fully considering the very demanding lateral stability required by the payload (0.1 

mm lateral displacement requirement).  

To perform this assessment in the frame of IXO, a high-fidelity dynamics 

model of the Spacecraft is therefore required to model the flexibility inherent to 

this type of design, and in particular the induced motion of the detector with re-

spect to the mirror. The DCAP-based linear flexi-body model detailed above has 

been used in that purpose, with as main objective to address the feasibility of and 

to characterize the AOCS performance for the nominal AOCS mode of IXO, that 

is to say the “Fine Pointing and Slew Mode” (FPS). 

Design Approach 

The following step-by-step approach for the control design and validation has 

been adopted:  
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1. First, a simplified dynamics model has been used, namely a cantilever 

beam attached to a rigid body, roughly representative of the expected 

MCI properties of the spacecraft ; a simplified controller has been then 

synthesized to characterize the achievable pointing performance of the 

spacecraft (Proportional Integrator & Derivative PID controller). This 

step is mandatory to initiate the preliminary AOCS design when no dy-

namics model is yet available. This step enables also to provide to the 

dynamics modelling expert the AOCS actuators characteristics (Reac-

tion Wheels and Thrusters) and to specify the outputs of the dynamics 

model that are required to characterize the AOCS/GNC performance. 

For IXO these were mainly: 

a. the attitude and attitude derivative of the S/C at mirror node. 

This is obviously required to assess the pointing and pointing 

stability performance.  

b. the 3-axis translation of the detector with respect to the mirror at 

focus point of the telescope. This is required to characterize the 

blurring of the X-ray image induced by the detector relative mo-

tion wrt mirror.  

2. Once the first high-fidelity Linear Dynamics Model has been made 

available by the dynamics modelling expert, a robust controller has been 

designed, based on the Hinfinity
 
formalism. The use of the linear dynamics 

model at this stage enables to validate extensively the behaviour of the 

control loop on the various IXO operation scenarios.  

3. Finally, the AOCS performance is cross-checked on reference cases us-

ing the final dynamics model, namely the Non-linear Dynamics Model 

with the robust controller previously designed.  

This approach has many advantages:  

1. The AOCS expert can start working on the design without having the 

fully representative dynamics model, which is by definition often the case 

at the start of a feasibility study.  

2. A first iteration on the AOCS design can be performed ahead, and speci-

fications for a representative dynamics model can be derived.  

3. When the linear dynamics model is delivered, it is easy to perform a first 

validation of this dynamics model with the simplified model.  

4. The non-linear model enables to validate the performance and robustness 

of the proposed controller.  

 

This process is summarized in Figure 13 
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Fig. 13 IXO AOCS/GNC co-design process 

 

AOCS Modes 
 

The Fine Pointing and Slew Mode (FPS) of IXO includes four different operation 

modes, as identified in Figure 14:  

- the Inertial Pointing Mode 

- the dithering mode, where the boresight follows a Lissajous pattern 

- the Raster mode, where the telescope follows a mosaic pattern  

- the Slew mode, corresponding to a retargeting manoeuvre of the tele-

scope from target n to target n+1. 
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Fig. 14 IXO AOCS modes 

Robust controller design 

A single robust controller has been synthesized for the FPS, based on the Hinfinity 

framework. The IXO science requirements have been translated in the standard 

problem description for robust control as described in [15] [16]. The generated 

controller covers the whole operation modes of the FPS, with, for the slew opera-

tion mode, the use of a feed-forward scheme for the Reaction Wheels command. 
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The synthesized controller has a low bandwidth of 1 mHz to avoid the excitation 

of the S/C flexible modes. Standard robustness criteria of 6 dB margin on the gain 

and 30° margin on the phase have been applied.  

The controller performance has then been assessed with a 3-dof high-fidelity 

relying on the linear dynamics model as described above, with the following  

scenarios:  

Ü Raster pointing scenario: two consecutive steps of 10 arcs around the Y and 

X axis respectively, with 3000s between the two steps.  

Ü Dithering pattern scenario : the Lissajous is 20 arcsec wide, with an X-axis 

frequency of 1/1200 Hz and a Y-axis frequency of 1/1800 Hz  

Ü Slews around X, Y and Z : Amplitudes up to 180 ° have been considered to 

cover the whole spectrum of possible slews. 
 

Results 
 

The results obtained have confirmed the feasibility of the baseline IXO AOCS de-

sign, and has even shown that margins with respect to some requirements were 

important. In particular, the lateral stability of the detector platform with respect to 

mirror is always much below the requirement of 0.1mm, with a worst case excita-

tion by AOCS smaller than 1 µm as shown in Figure 15. This proves that the 

AOCS might have coped with much more flexible (and therefore lighter) designs. 

It shall be noted that higher deviations are expected from thrusters impulses, used 

in TCM (required for example for wheels offloading or orbit control manoeuvres) 

or ASH modes. Future work dealing with the design of the other IXO AOCS 

modes will address this point, which is not expected to be critical, the lateral de-

viation requirement being not as critical in such phases.  
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Fig. 15 IXO worst case lateral deviation (detector vs Mirror) 180° slew around sun axis 

The overall pointing performance is in line with the 10 arcs APE requirement 

for all the observation modes. The dithering mode required by the Mission Re-

quirements revealed to be the most challenging one for the AOCS, the frequency 

of the lissajous pattern being of the same order as the controller bandwidth. As a 
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consequence, the robust controller has difficulties in tracking the Lissajous pattern 

as presented Figure 16, with on oscillatory tracking error of ~10 arcs amplitude If 

acceptable by the mission, a slight relaxation of the Lissajous frequency would 

solve this issue.  

The slew mode is performed without saturating the wheels, and with a mean 

tranquillization time of ~1000s (worst case presented Figure 17 is for a 180° 

slew). The tranquillization time has proven to be for IXO a significant contributor 

to the overall observation efficiency, with an impact of ~2% on the overall tele-

scope availability, making at the end the observation efficiency requirement only 

marginally met (86.6% obtained for 85% specified).  

Finally, the maximal agility reached is close to 75°/hr, including tranquilliza-

tion time. Realistic agility figures are an important input to scientists when estab-

lishing the telescope observation plan.  
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Fig. 16 IXO Lissajous and Raster guidance patterns (top), and simulated pointing perform-

ance (bottom) 
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Fig. 17 IXO Slew of 180° amplitude wrt X-axis. Pointing error (left) and Reaction Wheels 

angular momentum load (right) 

Conclusion 
 

Overall, the AOCS analysis performed in the frame of IXO based on the DCAP 

dynamics model, pave the way for an even more ambitious approach for the as-

sessment and pre-design of flexible spacecrafts: an integrated approach performed 

at phase 0 (CDF) in co-design between structure-mechanisms and AOCS/GNC  

subsystems would enable to improve the S/C design process by adjusting the 

structure flexibility to the AOCS capability, and vice & versa, for given science 

requirements.  

4   Conclusions 

In conclusion, the ESA Launcher Flight Dynamics Simulator represents an impor-

tant successful story of a European software package, internally developed by the 

European Space Agency with the support of Thales Alenia Space Italy. Its pecu-

liar generic modelling capabilities and computational speed are strong assets of 

the simulator, enabling real time comprehensive simulation of an entire multi-

stage launcher along all the different phases of the launch. The high degree of  

interface with different specific tool packages allows for exchanging data and co-

operating with other disciplines at the same time in a reliable and user-friendly 

environment. 

The International X-ray Observatory spacecraft has been considered as a chal-

lenging test case to evaluate advanced multi-body simulation packages. The simu-

lation strategies, tools and main results have been presented in details, together 

with AOCS/GNC interfaces. The use of the DCAP multi-body software has en-

abled to perform a preliminary design of a robust AOCS design for IXO ; further 

more, the integration of this dynamics model into a 3-dof AOCS simulator made 

possible the end-to-end characterization of IXO  AOCS performance for the whole 

science operation mode, proving to be an efficient support for the follow-on of 

IXO industrial assessment studies, as well as a valuable input for ESA internal 

Cosmic Vision L-Class review.  



Methodologies to Perform GNC Design and Analyses  449

 

Acronyms 

AME Attitude Measurement Error 

AOCS Attitude and Orbit Control Systems 

APE Absolute Pointing Error 

ASH Acquisition and Safe-Hold Mode 

ASTOS Aero-Space Trajectory Optimization Software 

CDF Concurrent Design Facility 

CEA Chemical Equilibrium with Applications 

DCAP Dynamic and Control Analysis Package 

ESA European Space Agency 

ESTEC European Space Research and Technology Centre 

FEM Finite Element Model 

FPS Fine Pointing and Slew Mode 

GNC Guidance, Navigation and Control 

GSTP ESA's General Support Technology Programme 

IMU Inertial Measurement Unit 

IOC Initial Operation Capability 

IOV In-Orbit Validation 

IXO International X-ray Observatory 

IXV Intermediate Expermental Vehicle 

JAXA Japan Aerospace Exploration Agency 

LQR Linear Quadratic Regulator 

LV Launch Vehicle 

MDO Multidisciplinary Design Optimization 

NASA National Aeronautics and Space Administration 

NLP Nonlinear programming solver 

OBAX One-Beam Approximation 

PID Proportional Integrator & Derivative 

R&D Research and Development 

S/C Spacecraft 

TCM Thrusters Control Mode 

TEC-ECN ESA's GNC Section 

TEC-MS ESA's Structures & Mechanisms Division 

TVC Thrust Vector Control 
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Optimal Guidance and Control of Lunar
Landers with Non-throttable Main Engine

Thimo Oehlschlägel, Stephan Theil, Hans Krüger, Matthias Knauer,

Jan Tietjen, and Christof Büskens

Abstract. Autonomous soft, safe and precise landing on celestial bodies like the

Moon, planets and asteroids is still a challenging task for future exploration

missions. To achieve a maximum of payload mass landed on the target body the

trajectories of landing vehicles need to be (fuel) optimized. In order to allow an ad-

justability of the trajectory and a compensation of disturbances for all vehicles so

far a thrust modulation is required. The drawback is that currently no main engine

is available which allows the needed thrust modulation for an efficient, robust and

safe landing on a celestial body like the Moon. The technology of the Apollo mis-

sions is not available anymore. Most planned lunar missions rely on the modulation

capability of multiple engines where in some cases the thrust of the auxiliary en-

gines for modulation is in the order of main engine thrust. This approach requires

a large number of smaller engines to achieve the needed thrust modulation adding

complexity and increasing the probability of failure.

This paper shows a different approach to compute and control optimal trajecto-

ries for landing vehicles. It provides a new method for computing fuel efficient opti-

mal trajectories which require minimal thrust modulation. A corresponding tracking

control scheme is presented which allows the pre-computed optimal trajectory to be

followed. The robustness of the method is discussed with results of a simulation.

1 Introduction

In the future more and more exploration missions will include a landing on the

surface of a celestial body. Currently missions to the Moon, to Mars and to asteroids
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are studied. The most critical phase of these missions is the descent and landing on

the surface of the planet, moon or asteroid. In order to achieve an autonomous, safe

and precise landing thrust modulation is needed at least for the Moon, Mars and

large asteroids or moons. Thrust modulation is necessary for three main reasons:

1. To allow a fuel optimal descent within a specified safety corridor,

2. To enable an approach manoeuvre with low descent rates for landing site inspec-

tion, and

3. To allow hovering.

Although not all missions require hovering, a thrust modulation is still needed to

fulfil the mission.

For the lunar soft landing missions in the past (Surveyor [10], Apollo [7]) throt-

table engines were used. Since these engines are not available anymore NASA is

developing [1] a new throttable engine for its Altair lander design [4], [3]. Other

landing vehicles under study are using two sets of engines. First, a main engine set

of a few large thrust engines, whose thrust cannot be modulated, is used for decel-

eration from orbital velocity. Their thrust can not be modulated. Second, the control

engine set comprises smaller pulsable thrusters which allow the modulation of the

total thrust. For most of these missions the ratio between total thrust of main engines

and total thrust of control engines is about 1 to 1 [8]. This leads to a large number

of smaller pulsable engines, thus adding a lot of complexity and risk.

From this situation the motivation arises to investigate the possibility of trajecto-

ries and controllers which allow the ratio between main and control engine to shift

towards the main engines. Thus the number of smaller control engines can be re-

duced. In the best case the required modulation is created by the reaction control

system (RCS), eliminating the need for the control thruster set.

Keeping this theme, this paper will first present the approach for computing opti-

mized trajectories for landing vehicles which use an RCS and a set of main engines

in which single engines can be switched off symmetrically during landing. The re-

sult of the optimization will be a reference trajectory in the altitude-downrange plane

which minimizes fuel consumption and usage of extra thrust from the RCS for thrust

modulation. In the next step a controller is developed to follow this trajectory. Using

simulations, the robustness of this approach is analysed and presented.

2 Model of Lunar Lander

In order to calculate optimal trajectories for the powered descent of the lunar lander

a mathematical model of its dynamical behaviour has to be established.

2.1 Coordinate Systems

For the formulation of the equations of motion of the lunar lander, two different

inertial reference frames are defined. First the equations are derived wrt the xyz-

frame. Since the initial and final position for the descent will be given with respect
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to locations on the target planet or moon, the equations of motion are converted to

downrange d, altitude h and crossrange c coordinates. The definition of the coordi-

nates is shown in Fig. 1. The transformation assumes a reference sphere of radius r.

The position can be described in spherical coordinates with the equatorial plane of

the spherical coordinates equal to the d-h plane. The angle in the plane is denoted

as δ . The angle perpendicular to the plane is γ . Defining crossrange and downrange

as the projection on the reference sphere the angles can be expressed as

δ =
d

r
, γ =

c

r
. (1)

Definition P0 as the position at zero downrange and zero crossrange, the current

position Pxyz =
(

x, y, z
)T

is a function of the angles δ and γ and the altitude h

P0 =
(

0, h + r, 0
)T

, Pxyz = Rotz(−δ )Rotx(γ)P0. (2)

d
δ

δ

γ c

h

x

y

z

r P̃xyz
Pxyz

P0

PDI

0

Fig. 1 Coordinate definition of altitude h, downrange d,

crossrange c.

αc+

αc−

hs
hd

ds

Fig. 2 Definition of landing cor-

ridor

2.2 Equations of Motion

The equations of motions of the lunar lander are deduced from equations with re-

spect to the inertial xyz-frame

P̈xyz = gxyz +
1

m
Txyz, (3)

where gxyz denotes the acceleration due to the gravitational field of the target object

and Txyz equals the effective thrust vector. For simplicity the gravitational field of

the target object is assumed to have a spherical potential
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g0 =
(

0, − M·G
(r+h)2 , 0

)T
, gxyz = Rotz(−δ )Rotx(γ)g0. (4)

The combination of the thrust of the main engines (Tm) and the RCS thrusters (Tu, Ts,

Tq) forms the total thrust vector T =
(

−Tm −Tu, −Ts, −Tq

)T
. The effective thrust

Txyz = Rotz(β − δ )Roty( χ )T (5)

depends on the orientation of the lander, which is described by the attitude angles

β (pitch) and χ (yaw). Under consideration of the total thrust vector T the latter

transformation yields

Txyz =

(

T1

T2

T3

)

=

⎛

⎝

cos
(

β − d
r

)

((Tm + Tu)cos χ + Tq sin χ)− sin
(

β − d
r

)

Ts

sin
(

β − d
r

)

((Tm + Tu)cos χ + Tq sin χ)+ cos
(

β − d
r

)

Ts

−(Tm + Tu)sin χ + Tq cos χ

⎞

⎠ . (6)

Replacing the left hand side of (3) with the second derivative of (2) wrt time under

consideration of (1,4,5) leads to the equations of motion in the dhc-frame

(

d̈

ḧ

c̈

)

=

⎛

⎜

⎜

⎝

r
m(r+h)cos c

r

(

−T1 cos d
r
+T2 sin d

r

)

+2ḋ
(

ċ
r
· tan c

r
− ḣ

r+h

)

1
m

[(

−T1 sin d
r −T2 cos d

r

)

cos c
r −T3 sin c

r

]

+
[

(

ḋ cos c
r

)2
+ ċ2

]

r+h
r2 − M·G

(r+h)2

r
m(r+h)

[(

T1 sin d
r
+T2 cos d

r

)

sin c
r
−T3 cos c

r

]

− ḋ2

r
sin c

r
cos c

r
− 2ċḣ

r+h

⎞

⎟

⎟

⎠

.

(7)

To ensure that the pitch and yaw angles vary continuously, their first derivatives

β̇ = ωβ , χ̇ = ωχ (8)

are added to the system of differential equations to consider the attitude motion with

ωβ and ωχ as commanded angular rates. Finally,

ṁ = −|Tm| ·σm − (|Tu|+ |Ts|+ |Tq|) ·σRCS (9)

describes the thrust-dependent fuel consumption depending on σm and σRCS. For the

purpose of trajectory optimization and control design, state space representations of

the dynamics of the lunar lander has to be derived. All states of the dynamical system

defined by (7, 8, 9) are gathered in the state vector

x(t) =
(

ḋ, ḣ, ċ, d, h, c, β , χ , m
)T

. (10)

The motion of the lunar lander can be influenced by the translatory and rotatory

thrusters, which form the control vector u(t) =
(

Tu, Ts, Tq, ωβ , ωχ
)T

. The thrust

of the main engines Tm can take only predefined values. The switching times τi, i =
1, . . . ,k, at which engines are disabled, can be collected in a vector of free parameters

p. With these abbreviations, formulae (7, 8, 9) can be written as
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ẋ(t) = f(x(t),u(t),p,t), x(0) = x0. (11)

3 Trajectory Optimization

3.1 Constraints and Landing Corridor

This mission also requires holding terminal conditions at some terminal time point

t f = τk

x(0) = ( ḋ0, 0, 0, 0, h0, 0, free, 0, m0 )T

x(t f ) = ( 0, ḣ f , 0, free, h f , 0, − π
2 , 0, free )T .

(12)

Further constraints for the states and the control inputs are provided, e.g.

• minimum switch on time for a subset of the main engines,

• maximum auxiliary thrust of the RCS thrusters,

• the boundaries of a landing corridor,

• a minimum time for the landing corridor.

The landing corridor was introduced to ensure that in the final approach phase a de-

fined amount of time is available for the final slow descent to the landing site. The

parameters of the corridor are shown in Fig. 2. The safety downrange ds denotes an

area around the landing site, where h > hs has to be ensured. The corridor height hc

as well as the corridor angles αc− and αc+ define the admissible domain for the final

landing path. The time from entering the corridor until reaching the final conditions

is constrained by a lower bound. For the computation of the optimal reference tra-

jectory, the motion of the lunar is restricted to a two-dimensional motion in the d-h

plane. Therefore it is assumed that Tq = Ts = ωχ = 0 holds.

3.2 Optimal Control Problem

There exist many ways to bring the lunar lander from its initial state to its desired

final position. Optimal control theory provides methods to find exactly that trajec-

tory which minimizes a given objective functional I, given the system of differential

equations f, the initial and terminal conditions ω and state and control constraints g

min
x,u,p

I(x, u,p)

s.t. ẋ(t) = f(x(t),u(t),p, t)
ω(x(0),x(τ1), . . . ,x(τk)) = 0

g(x(t),u(t),p,t) ≤ 0, t ∈ [0,t f ].

(13)

Here, the free initial value for β (0) is also added to the vector of free parameters

p. Table 1 gives some possible objective functionals for the optimization of the

trajectory of the lunar lander. Empirical evidence shows that a linear combination

of these functionals gives the best results.
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Table 1 Objective functionals for the trajectory optimization of a lunar lander.

Fuel consumption Auxiliary thrust (with possible

reference thrust Tu,ref)

Rotation of the lander Flight time

I1 =
−m(t f )+m(0)

m(0) I2 =
t f
∫

0

(Tu −Tu,ref)
2 dt I3 =

t f
∫

0

ω2
β dt I4 = t f

By switching from a continuous time axis t ∈ [0,t f ] to discrete time points t ∈
{0 = t1 ≤ t2 ≤ ·· · ≤ tl = t f }, l ∈ IN, the optimal control problem can be solved

numerically. The control function u(t) is also reduced to a discretized version ui ≈
u(ti), and the discretized state vector xi ≈ x(ti) can be calculated directly from the

system of differential equations. After replacing the optimal control problem (13)

by the discretized version

min
x1,...,xl ,u1,...ul ,p

I
(

x1, . . . ,xl, u1, . . .ul,p
)

s.t. xi+1 = xi +(ti+1 − ti) f
(

xi,ui,p,ti
)

, i = 1, . . . , l −1

ω
(

x1, . . . ,xl
)

= 0

g
(

xi,ui,p, ti
)

≤ 0, i = 1, . . . , l,

(14)

which has the form of a standard NLP problem, common SQP solvers can be ap-

plied. The software library NUDOCCCS [2] follows this method to solve optimal

control problems. The special structure of this large-scale problem can be exploited

by sparse solvers, e.g. WORHP [9].

The consideration of the corridor as constraints in the optimal control problem

downgrades the convergence of the iterative solver drastically. To circumvent this

effect, the optimization is performed in several steps:

1. Analysis of the corridor: A descent maneuver is calculated within the corridor

with free initial velocity to generate reasonable entry values.

2. Reaching the corridor: The trajectory is optimized until the entry of the corridor

is reached, where the final state is constrained by the corridor entry values from

the previous step.

3. Complete trajectory: By using the previous trajectory as an initial guess and by

extending it by the corridor phase, a robust solution for the optimal trajectory can

be found.

By treating the main descent and the corridor phase seperately in the discretization,

the constraints for the corridor can be implemented easily:

• The minimum flight time within the corridor is not allowed to be less than 60s.

• The flight path angle φ = arctan

∣

∣

∣

∣

ḣ

ḋ· h+r
r

∣

∣

∣

∣

is constrained by [αc− ,αc+ ] during the

corridor phase.

• The safety downrange is checked by calculating the possibly overlapping area of

the trajectory and the corridor in Fig. 2.
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3.3 Results for the Optimal Reference Trajectory

In order to show the quality of the results of the optimization the scenario from [8]

was selected for comparison. The initial conditions have been chosen in a similar

way. The difference for the thruster system is that the landing vehicle described in

[8] has four main thrusters of 500N thrust, eight pulsable thrusters of 220N and

an RCS with 22N thrusters. In our example we chose to have a set of eight 500N

thrusters and an RCS with 22N thrusters for small modulations of the thrust only. It

is assumed that the thrusters will be arranged symmetrically such that they can be

switched off in pairs, e.g. in a sequence of 8, 6 and 4 thrusters running at the same

time. In addition, the landing corridor is defined with the parameters in Table 2.

With the given conditions, the optimization of the trajectory provides the solution

displayed in Fig. 3. As can be seen in the upper left plot, the downrange is about

550km and the flight path angle is nearly 90◦ immediately before landing. The

lower left plot shows the attitude angle β of the landing vehicle in the d-h plane

which also ends with an upright position of the vehicle of 90 ◦ wrt the horizontal

plane. The upper right plot shows the corresponding vertical and horizontal veloci-

ties. In the lower right plot the main thrust Tm shows the two steps at 553s and 613s

where a symmetrical pair of main thrusters is switched off. The second graph shows

the auxiliary thrust Tu which is needed for the descent through the corridor in order

to compensate for the decreasing mass of the landing vehicle. The fuel consumption

for the reference trajectory is 45.4% of the initial mass. In order to check the robust-

ness of the optimization, the initial conditions for the landing trajectory are varied

over a range, which is similar to the uncertainty for the PDI state determined in [6].

The variation of downrange by ±11km, altitude by ±700m, horizontal velocity by

±0.6 m/s and vertical velocity by ±0.24 m/s, rendered for all cases an optimal solu-

tion fulfilling all constraints. The fuel consumption for all simulated cases varied

from 45.3% to 45.7%.

Table 2 Parameters of the landing corridor for the reference scenario.

hs ds hc αc− αc+ tc h f

3000m 10000m 1000m 20◦ 100◦ 60s 50m

4 Trajectory Control

The trajectory control of the lunar lander (Fig. 4) consist of a combination of feed-

forward and feedback controls, commonly referred to as two degree of freedom

approach. In order to guide the lunar lander during a landing manoeuvre along a cal-

culated optimal trajectory xref(t) the related control signal uref(t) is used as a feed-

forward control for the vehicle. To ensure that the lunar lander follows the optimal

trajectory even in the presence of parameter uncertainties and errors related to vari-

ations of the initial conditions or external disturbances and despite the fact that the
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Fig. 4 Structure of the closed loop in case of the provided 2DOF control approach, whereas

M denotes the plant and K the feedback controller.

optimal control uref(t) has been calculated using the assumptions Tq = Ts = ωχ = 0,

an additional feedback controller is required s.t. the overall control law is described

by u(t) = uref(t)+ δu(t).

4.1 Feedback Control Approach

For the purpose of the design of the feedback controller the dynamics of the lunar

lander are represented by the nonlinear state space model as shown in Eq. (11).

Assuming that the aforementioned state space representation is analytic and that a

real landing trajectory is close to the optimal trajectory x(t) = xref(t)+ δx(t), the

linearization of (11) along xref(t) and uref(t) yields

δ̇x(t) = A(t)δx(t)+ B(t)δu(t) (15)
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with A(t) =
∂ f

∂x

∣

∣

∣

∣

xref,uref

∈ IRn×n and B(t) =
∂ f

∂u

∣

∣

∣

∣

xref,uref

∈ IRn×m, t ∈
[
t0,t f

]

and corresponding initial conditions. The resulting linear time variant system moti-

vates the usage of a time variant control law that, considering the above-mentioned

overall control law, leads to

δu(t) = −K(t)δx(t) ⇒ u(t) = uref(t)−K(t)(x(t)−xref(t)) , t ∈
[
t0,t f

]
. (16)

The changes in the dynamics of the lunar lander during a landing manoeuvre along

a reference trajectory are supposed to be slow compared to the sampling rate of

the discretized version of the optimal control problem (14). For this reason the gain

matrix of the feedback controller K(t) is calculated only at each point ti, i ∈ I with

I = {1, .., l} of the control discretization by minimization of the cost function

J(δx,δu) =

∫ ∞

0
δx(τ)T Q(ti)δx(τ)+ δu(τ)T R(ti)δu(τ)dτ (17)

for all i ∈ I. Assuming the stabilizability of the underlying system, Q(ti) ≥ 0 and

R(ti) > 0 for all i ∈ I, the feedback matrix that solves the optimal control problem

is given as a function

K(ti) = R(ti)
−1B(ti)

T S(ti), i ∈ I, (18)

of the unique stabilizing solution S(ti) of the algebraic Riccati equation

A(ti)
T S(ti)+ S(ti)A(ti)−S(ti)B(ti)R(ti)

−1B(ti)
T S(ti)+ Q(ti) = 0, i ∈ I, (19)

s.t. A(ti)−B(ti)K(ti), i ∈ I is Hurwitz. To achieve a time-continuous control law, a

linear interpolation as in the case of the reference control uref in Section 3 has been

applied to the K(ti), i ∈ I.

The main goal for the feedback control is the adherence to the final point regard-

ing the reference trajectory. For this reason it is desirable to have a time-dependent

effect on the weighting behavior of the feedback cost function J described by (17).

Therefore the weighting matrices Q and R are changed during the control of the

reference trajectory. At the beginning it is more important to conserve energy than

to be precisely on the trajectory. However, at the end of the trajectory it is more

important to reach the final state. For this reason the values of the state weighting

matrix Q are chosen to be small at the beginning and increase while approaching

the final state, while the values of the control weighting matrix R are large at the

beginning and decrease towards the end.

In case of large perturbations in downrange it is desirable to choose the correct

point of the reference trajectory with minimum downrange error. In order to do so, a

time delay is calculated to shift the reference trajectory along the time axis. In case

of a negative downrange error the lander will fly with zero thrust until the downrange

is at the desired value. In case of a positive downrange error the lander skips a part

of the reference trajectory and reference control.
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4.2 Closed Loop Simulation Results

The closed loop exhibits the structure shown in Fig. 4, where the plant M is given

by the nonlinear system (11). To proof the performance of the provided trajectory

control and to allow a comparison to the results shown in [6], several simulations of

the closed loop have been carried out. For this purpose the initial perturbations have

been varied along grids within the ranges defined in 3.3. The results of different

simulations of the closed loop depending on the choice of the initial conditions are

shown in Fig. 5. The contour lines denote the additional mass consumption needed

by the feedback algorithm to satisfy the final constraints. A landing is classified as

successful if the condition |∆x(t f )| ≤ ∆xmax with

∆xmax =
(

1 m/s 1 m/s 1 m/s 100m 1m 100m 10 ◦ 180 ◦ free
)

holds, see [3, 5]. Note that the provided trajectory control enables successful land-

ings for each considered initial perturbation. The downrange reference points adap-

tion described in Section 4.1 makes it possible to handle large downrange perturba-

tions and is almost insensitive to negative values.

As an example for the detailed results of the closed loop simulations, a single

specific set of initial perturbations, based on the comparatively high additional fuel
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Table 3 Error in the final point.

ḋerr ḣerr ċerr derr herr cerr βerr χerr

0.1421m/s 0.0349m/s −0.0006m/s −5.3240m −0.0635m 0.0070m −0.0002◦ −0.0000◦
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Fig. 6 Result of the feedback control with initial perturbation of 700m in altitude, 0.24m/s

in vertical velocity, 11000m in downrange and 0.6m/s in horizontal velocity (solid lines) and

the corresponding reference trajectories (dotted lines).

consumption, has been chosen. Applying the feedback law (16) to the control sce-

nario in Section 3.3, with initial perturbation of 700m in altitude h, 0.24 m/s in ver-

tical velocity ḣ, 11km in downrange d and 0.6 m/s in horizontal velocity ḋ, shows

that the controller is able to reach the final point of the reference trajectory with

the final error given in Table 3. To reach this result, 0.7% of the initial mass was

needed additionally as fuel. Fig. 6 shows the controlled trajectory (solid line) and

the reference trajectory (dotted line) from Section 4.

5 Conclusions

As demonstrated in the simulations, the proposed methods for optimizing a refer-

ence trajectory and applying a feedback control law to follow this trajectory are a

solution to the problem of landing a vehicle on the moon with limited thrust modu-

lation capability. It was shown that the technique creating a reference trajectory by
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solving an optimal control problem is robust against variations of the initial con-

ditions. Furthermore, it was demonstrated that the designed feedback control law

is able to correct for errors in the initial conditions. For reasons of comparability

the scenario for the demonstration of the performance of the proposed method has

been chosen similar to the scenario used in [8]. The worst-case mass consumption

for the introduced method is 46.4% of the initial mass of the landing vehicle, re-

sulting from the worst-case mass consumption regarding to the optimal reference

trajectories (45.7%) and the worst-case additional mass consumption caused by the

feedback controller of (0.7%). The simulation results in [8] show a mean value for

the propellant consumption of 51.37% of the initial mass. From this it follows that

under the mentioned assumptions lunar landing using the method proposed in this

paper requires at least 4.97% less propellant mass. Concerning an initial mass of

1736kg [8] a landing maneuver requires 86.2kg less propellant mass than shown in

[8]. Although these results are very promising a few more steps have to be taken to

make this approach an attractive alternative to today’s concepts. One step is to apply

the proposed method to one or more planned missions. In order to do so it has to be

shown that the method also can work for e.g. initial mass changes and thruster inef-

ficiencies. Furthermore, constraints have to be added for the attitude of the lander,

especially during the final approach phase, where the landing site must be visible to

the hazard mapping sensors for a given time.

To solve the problems for these next steps, some ideas already exist. First, the

feedback controller should be able to change the time when some of the main

engines are shut down. Second, more than one reference trajectory can be com-

puted with different initial conditions and parameters (e.g. initial mass, thruster ef-

ficiency). Finally the feedback control law can be optimized and designed to guar-

antee robust stability and performance.
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Spiraling Approach for Angles-Only Navigation 
within On-Orbit Servicing Missions 

J. Spurmann* 

Abstract. On-Orbit Servicing missions possess a navigation problem for the tran-

sition from absolute to relative navigation when only using camera based relative 

navigation. This gap can be covered by the concept of angles-only navigation. To 

avoid singularities in angles-only navigation specifically trajectory profiles are  

designed. In this context the concept of the spiraling approach is proposed. The 

spiraling approach results from an eccentricity/inclination vector separation estab-

lished during far formation flight superimposed by an along-track drift to initiate 

far range approach. The benefit for line-of-sight measurements is a change in the 

formation geometry and thus an alternating measurement profile. As a result spe-

cific maneuvers required during two dimensional approaches to overcome singu-

larities within angles-only navigation are no longer necessary. In contrast they are 

included in the design of far formation flight and approach strategy.  

1   Introduction 

The capability to rendezvous and dock autonomously to spacecraft in Low Earth 

Orbit (LEO) would provide many options for future space exploration. On the one 

hand the increasing problem of Space Debris could benefit from such technology.  

By autonomously docking to potentially uncooperative satellites at their end of 

life and by de-orbiting them the collision risk within LEO could be reduced. An-

other field of interest would be the correction of launch errors. By servicing faulty 

injected satellites to correct the orbital elements to the desired ones mission suc-

cess rates could be increased. In a wider context a fleet management of multi sat-

ellite constellations could be envisaged. In addition repair of satellites or refueling 

activities close to their end of life could be targeted. In the most severe case the 

servicing satellite could also take over the complete attitude and orbit control of a 

malfunctioning satellite.  
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Due to variety of possible mission scenarios On-Orbit Servicing (OOS) has be-

come part of the space programs of the US, Japan, Canada and Germany. A mile-

stone was set with the successful completion of DARPA’s Orbital Express [1] 

mission in 2007. It demonstrated the ability to autonomously perform Rendezvous 

& Docking (RvD) operations including maintenance activities.  

Proceeding one step further some of the aforementioned on-orbit servicing mis-

sion scenarios desire to capture uncooperative client spacecraft in LEO and to de-

orbit the coupled configuration. In this context the uncooperative client does not 

provide any attitude or orbit control. Additionally, no docking interfaces or dedi-

cated reflector pattern for vision based navigation will be available. 

Trying to incorporate those requirements into a navigation concept ground 

based absolute navigation can be performed based on GPS data for the servicing 

spacecraft or radar tracking measurements for the client spacecraft. Those two 

techniques yield similar accuracies of several tens of meters [2]. With the desire to 

create a low cost spacecraft for higher reproducibility the selection of the relative 

navigation sensor is constrained. Low cost leads directly to low mass, low power 

consumption and reduced complexity. Accordingly, radar or LIDAR systems are 

not applicable due to their large mass and power penalties. The only option re-

maining is thus a camera based relative navigation system. Due to the accuracies 

of the absolute orbit determination the relative navigation has to start at some ki-

lometers relative range. The operative range of camera based sensors however, 

ends at several hundred meters of relative range [3]. Consequently a gap in the na-

vigation concept results for the handover from absolute to relative navigation. 

So far this gap has been covered by a method called Angles-Only navigation or 

navigation using Line-Of-Sight (LOS) measurements [4]. This concept considers 

to measure the relative angles between the two spacecraft and to apply those to a 

Kalman-Filter to estimate the spacecraft state. The state can thereby include dif-

ferent information. The absolute position could be included in different coordinate 

systems, or the relative position vector in a specific frame. Additionally, attitude 

and other orbit parameters as for example the drag coefficient could be included. 

Depending on the relative range however, only a part of the state information can 

be improved by angles-only navigation [4].  

Upon a closer look on earlier missions utilizing angles-only navigation mainly 

pure along-track separation has been regarded as the driver for the navigation con-

cept. This is especially represented by the so-called one percent rule used for na-

vigation sensor selection due to their achievable accuracy [3]. Due to singularities 

in the estimation process of angles-only navigation within those navigation con-

cepts specific maneuvers have to be performed to alter the flight profile such that a 

variation of the LOS measurements is available and accordingly the estimation of 

relative range with the required accuracy possible [5]. The master thesis of CHARI 

[6] performed within the mission analysis of Orbital Express considered out-of-

plane maneuvers to overcome the singularities for the first time. However, the hy-

brid trajectories designed by his findings of relative range accuracy within a Kal-

man filter upon different approach trajectories and applied maneuvers considered 

basically two dimensional approaches with additional out-of-plane maneuvers to 

increase relative range accuracy.  
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The scope of the work at hand will be to apply a three dimensional approach in 

form of a spiraling trajectory to the concept of angles-only navigation. The spiral-

ing trajectory starts from a safe formation flying ellipse resulting from an eccen-

tricity/inclination vector separation [7][8]. Upon application of an along-track drift 

maneuver the servicer starts drifting towards the client in form of a spiraling tra-

jectory. As a result the maneuvers to overcome angles-only navigation singulari-

ties are incorporated into the approach trajectory. Further, a safe formation flight 

is guaranteed in the beginning independent of the along-track accuracy since by 

design radial and cross-track component drive the formation flying ellipse. Upon 

approach the ellipse can be shrunken according to the improved accuracy resulting 

from angles-only navigation. 

Accordingly, a trajectory profile to overcome angles-only navigation singulari-

ties is combined with the formation flying and approach requirements brought up 

by rendezvous and docking of uncooperative spacecraft.  

2   Concept of Along-Track Separation 

Prior to going in to detail on the different concepts it should be mentioned that the 

development of formulas and plots is based on the RTN orbit frame. In this frame 

the R or radial unit vector is aligned with the radial direction (positive outwards), 

while the N or normal unit vector is parallel to the servicer angular momentum 

vector (positive in orbit normal direction). The T or tangential unit vector com-

pletes the right-handed coordinate system (positive in chief velocity direction). 

To start with the concept description, the gap in navigation accuracy is derived 

within the two dimensional approach concept mainly driven by the along-track  

separation. The design of the navigation concept for a rendezvous or formation 

flying mission is mainly based on the resulting navigation errors. Deriving propa-

gation errors for circular orbits in the relative orbital frame from the Clohessy-

Wiltshire equations [3] a radial displacement between the two spacecraft results in 

the largest error in the along-track component after one orbit propagation [3]. In 

case of concentric orbits the error is: 

0,3
RT

rr Δ⋅=Δ π  

In case of orbits with a slightly different eccentricity the two spacecraft have the 

same initial velocity, which amounts to an even larger error after propagation of 

one orbit: 

0,12
RT

rr ∆⋅=∆ π  

Additionally, errors from velocity uncertainties are most severe for along-track in-

accuracies. Those from radial difference are only 20% the size. 

0,3
TT

vTr ∆⋅⋅=∆  

Thus only regarding a pure along-track separation between the two spacecraft  

and including the effects of velocity errors [3] a rule was derived stating that the 
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navigation sensors must provide a one percent accuracy of the relative distance be-

tween the spacecraft for safe approach [3]. 

Considering the formation separated by a pure along-track component at the 

distance of several kilometers the navigation is performed on basis of absolute or-

bit determination. Ground based orbit determination based on GPS navigation so-

lution for servicer or radar tracking for client yields accuracies of several tens of 

meters [2]. Hence absolute orbit determination can only be used for phasing and 

far formation at several kilometers relative distance. The vision based navigation 

sensors, which are selected to reduce mass, power consumption and complexity 

are however only applicable up to distances of several hundred meters [3]. Hence 

a gap in the navigation concept arises during rendezvous with uncooperative 

spacecraft within the relative distance of several hundred meters to several kilo-

meters. A solution to this problem is the concept of Angles-Only navigation. 

3   Angles-Only Navigation 

Angles-only navigation can be implemented to acquire the relative range within 

the mentioned transition zone. The method is well know and widely applied in na-

val applications, orbit determination, target tracking, lunar and interplanetary opti-

cal navigation and homing missile applications [4]. 

The relative trajectory between client and servicer can be defined by the rela-

tive distance r and the line-of-sight (LOS) angles azimuth α and elevation e. The 

basic principle of the angles-only navigation is then to measure the LOS angles 

with the according time very accurately (Fig.1), as soon as the client can be de-

tected as a moving star in front of the background star field by the far range ca-

mery (FRC). The corresponding range can be derived from the assumptions made 

above to several kilometers. The obtained measurements are then used to update a 

Kalman Filter, which propagates the orbit onboard the servicer or on ground. 

Apart from an initial guess of the relative range the Kalman Filter uses the final 

spacecraft states from absolute navigation, the orientations of the spacecraft, bi-

ases (gyro bias or camera misalignment) and noise terms to determine the state 

vector of the client spacecraft [4]. By iterative propagation and a continuous up-

date process of the filter, the accuracy of the measurements and most important 

that of the relative range will improve. 

The major problem of angles-only navigation is however, the inherent limita-

tion in determining the relative range with adequate accuracy [5]. If the geometry 

of the relative motion between servicer and client does not change and equiva-

lently the continuous LOS measurement profile is not altered, a precise determina-

tion of the relative range is not possible [6].  

When targeting an approach concept based on along-track separation this prob-

lem will definitely occur. While resting at hold points or even during hopping ap-

proaches in along-track direction an adequate navigation would not be possible 

[6]. Thus not only a general change of geometry is important but also the direction 

of applied motion. A solution within this concept is however the application of 

out-of-plane maneuvers [6]. Those force a change of the relative geometry. As a  
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Fig. 1 Geometry of Angles-Only measurements.  

 

Fig. 2 Angles-Only measurements during fly-around maneuver in RTN frame.  
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result the relative range can be determined with higher accuracy by planning of 

specific trajectory profiles at the handover from absolute to relative navigation. As 

a result from CHARI [6] approach of the client including impulsive maneuvers in 

cross-track direction is advantageous similar to approaches in radial direction or 

fly around maneuvers (Fig.2) within this approach strategy. The limitation of in-

creasing navigation errors within the relative range while resting at hold points 

remains however. 

4   Concept of E-/I-Vector Separation and Spiraling Approach 

The concept of e-/i-vector separation originally developed for geostationary satel-

lites and adopted to LEO missions [8] considers slightly different eccentricity and 

inclination of the client and servicer orbit. Accordingly, upon application of paral-

lel eccentricity and inclination vectors a safe separation in radial and cross-track 

direction is guaranteed to be smaller than  

( )iaea δδ ⋅⋅ ,min
.
 

Thus the servicer is flying in a relative ellipse with the client while being always 

separated safely in radial and cross-track direction. Accordingly, even if the along-

track component vanishes completely due to its imprecise knowledge the configu-

ration would still be safely separated in cross-track and radial direction. As those 

two components of the relative position vector can on the one hand be determined 

much more accurately via ground based absolute navigation based on GPS or ra-

dar tracking data [2] and the error development is at a much smaller scale on the 

other hand a large benefit is given to the collision risk.  

 

Fig. 3 Spiral approach trajectory in RTN frame.  
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Upon application of an along-track maneuver the far range approach towards 

the client spacecraft is initiated. The resulting trajectory has the form of a spiral 

and is hence called spiraling approach (Fig. 3). 

Accordingly, a continuously alternating flight profile in all three dimensions is 

available by application of one single maneuver. Hence the problem of singulari-

ties within angles-only navigation is removed by incorporating one maneuver, 

which has to be conducted anyhow to start the rendezvous approach. To further 

improve the relative range determination accuracy upon approaching the client 

spacecraft in-plane and out-of-plane maneuvers can be applied to shrink the el-

lipse (Fig. 3). 

5   Benefits from Spiraling Approach to Angles-Only 

Singularities 

In contrast to the required trajectory profile during pure along-track separation the 

e-/i-vector separation provides a huge benefit on angles-only navigation. Consid-

ering a configuration with a servicer in a relative ellipse with the client spacecraft 

at a certain along-track separation a configuration is found for safe far formation 

flight. 

The benefit of this configuration to angles-only navigation is significant. At 

first the natural motion with in the e-/i-vector separation improves the relative 

range accuracy [6]. Further, the along-track drift alters the flight profile such that 

the relative range accuracy should be guaranteed during approach. In case of re-

duced filter performance the radial and cross-track maneuvers performed to shrink 

the spiral upon approach improve the performance again. As a result, the singu-

larities can be resolved. 

A numerical verification of the benefit has to be investigated in further studies.  

6   Conclusion 

It is evident that the concept of the spiraling approach, resulting from e-/i-vector 

separation [7][8] and an applied along-track drift, provides significant benefit to 

the concept of angles-only navigation [5][6]. With the continuous relative motion 

between the two spacecraft the line-of-sight measurement profile alternates con-

tinuously such that a good set of observations is available for setting up the navi-

gation filter. The inherent limitation of former approach concepts [5] to estimate 

the relative position with adequate accuracy can thus be overruled and the singu-

larities in angles-only navigation resolved. Especially the required maneuvers to 

change the trajectory profile [5] have not to be designed specifically anymore, as 

they are incorporated in the approach strategy. Additionally a passively safe for-

mation is guaranteed prior to availability of angles-only measurements. Conclud-

ing the gap in the navigation concept between absolute and relative navigation is 

elegantly resolved by including the maneuvers required to change the formation 

geometry in the design of the approach concept in form of the spiraling approach. 
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